Cargando…
On Weather Data-Based Prediction of Gamma Exposure Rates Using Gradient Boosting Learning for Environmental Radiation Monitoring
Gamma radiation has been classified by the International Agency for Research on Cancer (IARC) as a carcinogenic agent with sufficient evidence in humans. Previous studies show that some weather data are cross-correlated with gamma exposure rates; hence, we hypothesize that the gamma exposure rate co...
Autores principales: | Cho, Changhyun, Kwon, Kihyeon, Wu, Chase |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501500/ https://www.ncbi.nlm.nih.gov/pubmed/36146409 http://dx.doi.org/10.3390/s22187062 |
Ejemplares similares
-
Engineered gamma radiation phytosensors for environmental monitoring
por: Sears, Robert G., et al.
Publicado: (2023) -
Hands-On Gradient Boosting with XGBoost and scikit-learn
por: Wade, Corey, et al.
Publicado: (2020) -
Small immunological clocks identified by deep learning and gradient boosting
por: Kalyakulina, Alena, et al.
Publicado: (2023) -
Learning with privileged and sensitive information: a gradient-boosting approach
por: Yan, Siwen, et al.
Publicado: (2023) -
Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors Using Gradient Boosting Frameworks
por: Westhues, Cathy C., et al.
Publicado: (2021)