Cargando…
Computational Approach to the Surface-Crosslinking Process of Superabsorbent Polymer via Central Composite Design
The improvement of gel strength and absorption properties through the surface-crosslinking of superabsorbent polymers (SAPs) is essential for sanitary industry applications. We prepared core-SAP via aqueous solution copolymerization, and then surface-crosslinked the core-SAP under various conditions...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501642/ https://www.ncbi.nlm.nih.gov/pubmed/36145991 http://dx.doi.org/10.3390/polym14183842 |
Sumario: | The improvement of gel strength and absorption properties through the surface-crosslinking of superabsorbent polymers (SAPs) is essential for sanitary industry applications. We prepared core-SAP via aqueous solution copolymerization, and then surface-crosslinked the core-SAP under various conditions. The structure of the SAP was characterized using Fourier transform infrared (FT-IR) spectroscopy. Central composite design (CCD) of response surface methodology (RSM) has been applied to determine the optimum surface-crosslinking conditions such as surface-crosslinker content, reaction temperature, and reaction time. The optimal surface-crosslinking conditions were identified at a surface-crosslinker content of 2.22 mol%, reaction temperature of 160 °C, and reaction time of 8.7 min. The surface-crosslinked SAP showed excellent absorbency under load of 50 g/g with a permeability of 50 s. Other absorption properties were also evaluated by measuring the free absorbency and centrifuge retention capacity in saline solution. |
---|