Cargando…
A novel infrasound and audible machine-learning approach to the diagnosis of COVID-19
BACKGROUND: The coronavirus disease 2019 (COVID-19) outbreak has rapidly spread around the world, causing a global public health and economic crisis. A critical limitation in detecting COVID-19-related pneumonia is that it is often manifested as a “silent pneumonia”, i.e. pulmonary auscultation that...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501643/ https://www.ncbi.nlm.nih.gov/pubmed/36284830 http://dx.doi.org/10.1183/23120541.00152-2022 |
Sumario: | BACKGROUND: The coronavirus disease 2019 (COVID-19) outbreak has rapidly spread around the world, causing a global public health and economic crisis. A critical limitation in detecting COVID-19-related pneumonia is that it is often manifested as a “silent pneumonia”, i.e. pulmonary auscultation that sounds “normal” using a standard stethoscope. Chest computed tomography is the gold standard for detecting COVID-19 pneumonia; however, radiation exposure, availability and cost preclude its utilisation as a screening tool for COVID-19 pneumonia. In this study we hypothesised that COVID-19 pneumonia, “silent” to the human ear using a standard stethoscope, is detectable using a full-spectrum auscultation device that contains a machine-learning analysis. METHODS: Lung sound signals were acquired, using a novel full-spectrum (3–2000 Hz) stethoscope, from 164 COVID-19 pneumonia patients, 61 non-COVID-19 pneumonia patients and 141 healthy subjects. A machine-learning classifier was constructed and the data were classified into three groups: 1) normal lung sounds, 2) COVID-19 pneumonia and 3) non-COVID-19 pneumonia. RESULTS: Standard auscultation found that 72% of the non-COVID-19 pneumonia patients had abnormal lung sounds compared with only 25% of the COVID-19 pneumonia patients. The classifier's sensitivity and specificity for the detection of COVID-19 pneumonia were 97% and 93%, respectively, when analysing the sound and infrasound data, and they were reduced to 93% and 80%, respectively, without the infrasound data (p<0.01 difference in receiver operating characteristic curves with and without infrasound). CONCLUSIONS: This study reveals that useful clinical information exists in the infrasound spectrum of COVID-19-related pneumonia and machine-learning analysis applied to the full spectrum of lung sounds is useful in its detection. |
---|