Cargando…
Machine Learning Assisted Prediction of Power Conversion Efficiency of All-Small Molecule Organic Solar Cells: A Data Visualization and Statistical Analysis
Organic solar cells are famous for their cheap solution processing. Their industrialization needs fast designing of efficient materials. For this purpose, testing of large number of materials is necessary. Machine learning is a better option due to cheaper prediction of power conversion efficiencies...
Autores principales: | Alwadai, Norah, Khan, Salah Ud-Din, Elqahtani, Zainab Mufarreh, Ud-Din Khan, Shahab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502131/ https://www.ncbi.nlm.nih.gov/pubmed/36144642 http://dx.doi.org/10.3390/molecules27185905 |
Ejemplares similares
-
Photonics with Gallium Nitride Nanowires
por: Alwadai, Norah, et al.
Publicado: (2022) -
Suitability of thermal plasma for solid waste treatment and non-thermal plasma for nano-scale high-tech plasmonic materials: a concise review
por: Khan, Shahab Ud-Din, et al.
Publicado: (2022) -
Machine learning based approaches for detecting COVID-19 using clinical text data
por: Khanday, Akib Mohi Ud Din, et al.
Publicado: (2020) -
Theoretical–Computational Study of Atmospheric DBD Plasma and Its Utility for Nanoscale Biocompatible Plasmonic Coating
por: Khan, Taj Muhammad, et al.
Publicado: (2021) -
Genetically Engineered Porcine Organs for Human Xenotransplantation
por: Shahab, Maryam, et al.
Publicado: (2022)