Cargando…
Normalization by distributional resampling of high throughput single-cell RNA-sequencing data
MOTIVATION: Normalization to remove technical or experimental artifacts is critical in the analysis of single-cell RNA-sequencing experiments, even those for which unique molecular identifiers are available. The majority of methods for normalizing single-cell RNA-sequencing data adjust average expre...
Autores principales: | Brown, Jared, Ni, Zijian, Mohanty, Chitrasen, Bacher, Rhonda, Kendziorski, Christina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502161/ https://www.ncbi.nlm.nih.gov/pubmed/34146085 http://dx.doi.org/10.1093/bioinformatics/btab450 |
Ejemplares similares
-
Design and computational analysis of single-cell RNA-sequencing experiments
por: Bacher, Rhonda, et al.
Publicado: (2016) -
CB2 improves power of cell detection in droplet-based single-cell RNA sequencing data
por: Ni, Zijian, et al.
Publicado: (2020) -
Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments
por: Bacher, Rhonda, et al.
Publicado: (2018) -
SCnorm: robust normalization of single-cell RNA-seq data
por: Bacher, Rhonda, et al.
Publicado: (2017) -
SpatialCorr identifies gene sets with spatially varying correlation structure
por: Bernstein, Matthew N., et al.
Publicado: (2022)