Cargando…
Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images
A dual autoencoder employing separable convolutional layers for image denoising and deblurring is represented. Combining two autoencoders is presented to gain higher accuracy and simultaneously reduce the complexity of neural network parameters by using separable convolutional layers. In the propose...
Autores principales: | Solovyeva, Elena, Abdullah, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502178/ https://www.ncbi.nlm.nih.gov/pubmed/36135415 http://dx.doi.org/10.3390/jimaging8090250 |
Ejemplares similares
-
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2022) -
Denoising of Optics Measurements Using Autoencoder Neural Networks
por: Fol, Elena, et al.
Publicado: (2021) -
Author Correction: Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2023) -
Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model
por: Mei, Shuang, et al.
Publicado: (2018)