Cargando…
Processing Photoplethysmograms Recorded by Smartwatches to Improve the Quality of Derived Pulse Rate Variability
Cardiac monitoring based on wearable photoplethysmography (PPG) is widespread because of its usability and low cost. Unfortunately, PPG is negatively affected by various types of disruptions, which could introduce errors to the algorithm that extracts pulse rate variability (PRV). This study aims to...
Autores principales: | Polak, Adam G., Klich, Bartłomiej, Saganowski, Stanisław, Prucnal, Monika A., Kazienko, Przemysław |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502353/ https://www.ncbi.nlm.nih.gov/pubmed/36146394 http://dx.doi.org/10.3390/s22187047 |
Ejemplares similares
-
Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
por: Saganowski, Stanisław, et al.
Publicado: (2022) -
Impact of recording length and other arrhythmias on atrial fibrillation detection from wrist photoplethysmogram using smartwatches
por: Liao, Min-Tsun, et al.
Publicado: (2022) -
Analysis of group evolution prediction in complex networks
por: Saganowski, Stanisław, et al.
Publicado: (2019) -
Predicting the Evolution of Physics Research from a Complex Network Perspective
por: Liu, Wenyuan, et al.
Publicado: (2019) -
Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data
por: Dzieżyc, Maciej, et al.
Publicado: (2020)