Cargando…
Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis
The incidence of eutrophication is increasing due to fertilizer abuse and global warming. Eutrophication can induce the proliferation of cyanobacteria such as Microcystis, which produces microcystins. Microcystins are toxic to specific organs such as the liver and the heart. Thus, monitoring of micr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502409/ https://www.ncbi.nlm.nih.gov/pubmed/36136563 http://dx.doi.org/10.3390/toxins14090625 |
_version_ | 1784795698101747712 |
---|---|
author | Seo, Chan Lee, Joo Won Jung, Won-Kyo Lee, Yoon-Mi Lee, Seungjun Lee, Sang Gil |
author_facet | Seo, Chan Lee, Joo Won Jung, Won-Kyo Lee, Yoon-Mi Lee, Seungjun Lee, Sang Gil |
author_sort | Seo, Chan |
collection | PubMed |
description | The incidence of eutrophication is increasing due to fertilizer abuse and global warming. Eutrophication can induce the proliferation of cyanobacteria such as Microcystis, which produces microcystins. Microcystins are toxic to specific organs such as the liver and the heart. Thus, monitoring of microcystins is strongly required to control drinking water and agricultural product qualities. However, microcystins could be adsorbed by plastic materials during sample storage and preparation, hindering accurate analysis. Therefore, the current study examined the recovery rate of microcystins from six plastics used for containers and eight plastics used for membrane filters. Among the six plastics used for containers, polyethylene terephthalate showed the best recovery rate (≥81.3%) for 48 h. However, polypropylene, polystyrene, and high- and low-density polyethylenes showed significant adsorption after exposure for 1 hr. For membrane materials, regenerated cellulose (≥99.3%) showed the highest recovery rate of microcystins, followed by polyvinylidene fluoride (≥94.1%) and polytetrafluoroethylene (≥95.7%). The adsorption of microcystins appeared to be strongly influenced by various molecular interactions, including hydrophobic interaction, hydrogen bonding, and electrostatic interaction. In addition, microcystins’ functional residues seemed to be critical factors affecting their adsorption by plastic materials. The present study demonstrates that polyethylene terephthalate and regenerated cellulose membrane are suitable plastic materials for the analysis of microcystins. |
format | Online Article Text |
id | pubmed-9502409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95024092022-09-24 Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis Seo, Chan Lee, Joo Won Jung, Won-Kyo Lee, Yoon-Mi Lee, Seungjun Lee, Sang Gil Toxins (Basel) Article The incidence of eutrophication is increasing due to fertilizer abuse and global warming. Eutrophication can induce the proliferation of cyanobacteria such as Microcystis, which produces microcystins. Microcystins are toxic to specific organs such as the liver and the heart. Thus, monitoring of microcystins is strongly required to control drinking water and agricultural product qualities. However, microcystins could be adsorbed by plastic materials during sample storage and preparation, hindering accurate analysis. Therefore, the current study examined the recovery rate of microcystins from six plastics used for containers and eight plastics used for membrane filters. Among the six plastics used for containers, polyethylene terephthalate showed the best recovery rate (≥81.3%) for 48 h. However, polypropylene, polystyrene, and high- and low-density polyethylenes showed significant adsorption after exposure for 1 hr. For membrane materials, regenerated cellulose (≥99.3%) showed the highest recovery rate of microcystins, followed by polyvinylidene fluoride (≥94.1%) and polytetrafluoroethylene (≥95.7%). The adsorption of microcystins appeared to be strongly influenced by various molecular interactions, including hydrophobic interaction, hydrogen bonding, and electrostatic interaction. In addition, microcystins’ functional residues seemed to be critical factors affecting their adsorption by plastic materials. The present study demonstrates that polyethylene terephthalate and regenerated cellulose membrane are suitable plastic materials for the analysis of microcystins. MDPI 2022-09-07 /pmc/articles/PMC9502409/ /pubmed/36136563 http://dx.doi.org/10.3390/toxins14090625 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Seo, Chan Lee, Joo Won Jung, Won-Kyo Lee, Yoon-Mi Lee, Seungjun Lee, Sang Gil Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis |
title | Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis |
title_full | Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis |
title_fullStr | Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis |
title_full_unstemmed | Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis |
title_short | Examination of Microcystin Adsorption by the Type of Plastic Materials Used during the Procedure of Microcystin Analysis |
title_sort | examination of microcystin adsorption by the type of plastic materials used during the procedure of microcystin analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502409/ https://www.ncbi.nlm.nih.gov/pubmed/36136563 http://dx.doi.org/10.3390/toxins14090625 |
work_keys_str_mv | AT seochan examinationofmicrocystinadsorptionbythetypeofplasticmaterialsusedduringtheprocedureofmicrocystinanalysis AT leejoowon examinationofmicrocystinadsorptionbythetypeofplasticmaterialsusedduringtheprocedureofmicrocystinanalysis AT jungwonkyo examinationofmicrocystinadsorptionbythetypeofplasticmaterialsusedduringtheprocedureofmicrocystinanalysis AT leeyoonmi examinationofmicrocystinadsorptionbythetypeofplasticmaterialsusedduringtheprocedureofmicrocystinanalysis AT leeseungjun examinationofmicrocystinadsorptionbythetypeofplasticmaterialsusedduringtheprocedureofmicrocystinanalysis AT leesanggil examinationofmicrocystinadsorptionbythetypeofplasticmaterialsusedduringtheprocedureofmicrocystinanalysis |