Cargando…
FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features
Traffic flow forecasting is a critical input to intelligent transportation systems. Accurate traffic flow forecasting can provide an effective reference for implementing traffic management strategies, developing travel route planning, and public transportation risk assessment. Recent deep learning a...
Autores principales: | Zhou, Qianqian, Chen, Nan, Lin, Siwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502485/ https://www.ncbi.nlm.nih.gov/pubmed/36146272 http://dx.doi.org/10.3390/s22186921 |
Ejemplares similares
-
Road traffic flow prediction based on dynamic spatiotemporal graph attention network
por: Chen, Yuguang, et al.
Publicado: (2023) -
GLSNN Network: A Multi-Scale Spatiotemporal Prediction Model for Urban Traffic Flow
por: Cai, Benhe, et al.
Publicado: (2022) -
Reconstructing secondary data based on air quality, meteorological and traffic data considering spatiotemporal components
por: Iskandaryan, Ditsuhi, et al.
Publicado: (2023) -
Short-Term Traffic State Prediction Based on the Spatiotemporal Features of Critical Road Sections
por: Yang, Gang, et al.
Publicado: (2018) -
Traffic prediction in SDN for explainable QoS using deep learning approach
por: Wassie, Getahun, et al.
Publicado: (2023)