Cargando…

Identification of Potential Allosteric Site Binders of Indoleamine 2,3-Dioxygenase 1 from Plants: A Virtual and Molecular Dynamics Investigation

Ligand and structure-based computational screenings were carried out to identify flavonoids with potential anticancer activity. Kushenol E, a flavonoid with proven anticancer activity and, at the same time, an allosteric site binder of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), was used as the...

Descripción completa

Detalles Bibliográficos
Autores principales: de Almeida, Vitor Martins, Santos-Filho, Osvaldo Andrade
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502501/
https://www.ncbi.nlm.nih.gov/pubmed/36145319
http://dx.doi.org/10.3390/ph15091099
Descripción
Sumario:Ligand and structure-based computational screenings were carried out to identify flavonoids with potential anticancer activity. Kushenol E, a flavonoid with proven anticancer activity and, at the same time, an allosteric site binder of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), was used as the reference compound. Molecular docking and molecular dynamics simulations were performed for the screened flavonoids with known anticancer activity. The following two of these flavonoids were identified as potential inhibitors of IDO1: dichamanetin and isochamanetin. Molecular dynamics simulations were used to assess the conformational profile of IDO1-flavonoids complexes, as well as for calculating the bind-free energies.