Cargando…
Gait Detection from a Wrist-Worn Sensor Using Machine Learning Methods: A Daily Living Study in Older Adults and People with Parkinson’s Disease
Remote assessment of the gait of older adults (OAs) during daily living using wrist-worn sensors has the potential to augment clinical care and mobility research. However, hand movements can degrade gait detection from wrist-sensor recordings. To address this challenge, we developed an anomaly detec...
Autores principales: | Brand, Yonatan E., Schwartz, Dafna, Gazit, Eran, Buchman, Aron S., Gilad-Bachrach, Ran, Hausdorff, Jeffrey M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502704/ https://www.ncbi.nlm.nih.gov/pubmed/36146441 http://dx.doi.org/10.3390/s22187094 |
Ejemplares similares
-
Quantification of Daily-Living Gait Quantity and Quality Using a Wrist-Worn Accelerometer in Huntington's Disease
por: Keren, Karin, et al.
Publicado: (2021) -
Identification of Characteristic Motor Patterns Preceding Freezing of Gait in Parkinson’s Disease Using Wearable Sensors
por: Palmerini, Luca, et al.
Publicado: (2017) -
The role of wrist-worn technology in the management of Parkinson’s disease in daily life: A narrative review
por: Li, Peng, et al.
Publicado: (2023) -
Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning
por: Kiprijanovska, Ivana, et al.
Publicado: (2020) -
Thermal sensors improve wrist-worn position tracking
por: Son, Jake J., et al.
Publicado: (2019)