Cargando…
Skyrmion Dynamics in a Double-Disk Geometry under an Electric Current
In this work, we present an analysis of skyrmion dynamics considering Dzyaloshinskii–Moriya interactions in an STNO device with a double-disk geometry. Three regimes were observed as a function of geometric parameters and the electric current density: (i) the skyrmion is annihilating at the system’s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502721/ https://www.ncbi.nlm.nih.gov/pubmed/36144874 http://dx.doi.org/10.3390/nano12183086 |
Sumario: | In this work, we present an analysis of skyrmion dynamics considering Dzyaloshinskii–Moriya interactions in an STNO device with a double-disk geometry. Three regimes were observed as a function of geometric parameters and the electric current density: (i) the skyrmion is annihilating at the system’s border; (ii) the skyrmion moves in a non-circular trajectory alternating its position between the two disks, and (iii) the skyrmion only rotates inside a one-disk subsystem. For the annihilation state, we found that the transient time decays within a stretched exponential law as a function of the electric current. Our results show a 2D state diagram that can guide new experimental work in order to obtain these specific behaviors for new applications based on skyrmion dynamics. |
---|