Cargando…
Vector Auto-Regression-Based False Data Injection Attack Detection Method in Edge Computing Environment
With the wide application of advanced communication and information technology, false data injection attack (FDIA) has become one of the significant potential threats to the security of smart grid. Malicious attack detection is the primary task of defense. Therefore, this paper proposes a method of...
Autores principales: | Chen, Yi, Hayawi, Kadhim, Zhao, Qian, Mou, Junjie, Yang, Ling, Tang, Jie, Li, Qing, Wen, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502790/ https://www.ncbi.nlm.nih.gov/pubmed/36146137 http://dx.doi.org/10.3390/s22186789 |
Ejemplares similares
-
A Bilevel Optimization Model Based on Edge Computing for Microgrid
por: Chen, Yi, et al.
Publicado: (2022) -
Detecting Malicious False Frame Injection Attacks on Surveillance Systems at the Edge Using Electrical Network Frequency Signals
por: Nagothu, Deeraj, et al.
Publicado: (2019) -
Privacy-Preserving Data Aggregation against False Data Injection Attacks in Fog Computing
por: Zhang, Yinghui, et al.
Publicado: (2018) -
Detection of False Data Injection Attacks in Smart Grids Based on Expectation Maximization
por: Hu, Pengfei, et al.
Publicado: (2023) -
A Novel Diagnosis Scheme against Collusive False Data Injection Attack
por: Hu, Jiamin, et al.
Publicado: (2023)