Cargando…

Poly(1-Napthylamine) Nanoparticles as Potential Scaffold for Supercapacitor and Photocatalytic Applications

Herein, we explore the supercapacitor and photocatalytic applications of poly(1-naphthylamine) (PNA) nanoparticles. The PNA nanoparticles were synthesized by using polymerization of 1-naphthylamine and characterized with several techniques in order to understand the morphological, structural, optica...

Descripción completa

Detalles Bibliográficos
Autores principales: Umar, Ahmad, Kumar, Sundararajan Ashok, Rosaline, Daniel Rani, Algadi, Hassan, Ibrahim, Ahmed A., Ahmed, Faheem, Foletto, Edson Luiz, Inbanathan, Savariroyan Stephen Rajkumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502796/
https://www.ncbi.nlm.nih.gov/pubmed/36144151
http://dx.doi.org/10.3390/mi13091528
Descripción
Sumario:Herein, we explore the supercapacitor and photocatalytic applications of poly(1-naphthylamine) (PNA) nanoparticles. The PNA nanoparticles were synthesized by using polymerization of 1-naphthylamine and characterized with several techniques in order to understand the morphological, structural, optical and compositional properties. The structural and morphological properties confirmed the formation of crystalline nanoparticles of PNA. The Fourier-transform infrared (FTIR) spectrum revealed the successful polymerization of 1-naphthylamine monomer to PNA. The absorption peaks that appeared at 236 and 309 nm in the UV–Vis spectrum for PNA nanoparticles represented the π–π(*) transition. The supercapacitor properties of the prepared PNA nanoparticles were evaluated with cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) methods at different scan rates and current densities, respectively. The effective series resistance was calculated using electrochemical impedance spectroscopy (EIS), resulting in a minimum resistance value of 1.5 Ω. The highest specific capacitance value of PNA was found to be 255 Fg(−1). This electrode also exhibited excellent stability with >93% capacitance retention for 1000 cycles, as measured at 1A g(−1). Further, the prepared PNA nanoparticles were used as an effective photocatalyst for the photocatalytic degradation of methylene blue (MB) dye, which exhibited ~61% degradation under UV light irradiation. The observed results revealed that PNA nanoparticles are not only a potential electrode material for supercapacitor applications but also an efficient photocatalyst for the photocatalytic degradation of hazardous and toxic organic dyes.