Cargando…

Overexpression of PagERF072 from Poplar Improves Salt Tolerance

Extreme environments, especially drought and high salt conditions, seriously affect plant growth and development. Ethylene-responsive factor (ERF) transcription factors play an important role in salt stress response. In this study, a significantly upregulated ERF gene was identified in 84K (Populus...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xuemei, Cheng, Zihan, Yao, Wenjing, Gao, Yuan, Fan, Gaofeng, Guo, Qing, Zhou, Boru, Jiang, Tingbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502824/
https://www.ncbi.nlm.nih.gov/pubmed/36142609
http://dx.doi.org/10.3390/ijms231810707
Descripción
Sumario:Extreme environments, especially drought and high salt conditions, seriously affect plant growth and development. Ethylene-responsive factor (ERF) transcription factors play an important role in salt stress response. In this study, a significantly upregulated ERF gene was identified in 84K (Populus alba × P. glandulosa), which was named PagERF072. PagERF072 was confirmed to be a nuclear-localized protein. The results of yeast two-hybrid (Y2H) assay showed that PagERF072 protein exhibited no self-activating activity, and yeast one-hybrid (Y1H) demonstrated that PagERF072 could specifically bind to GCC-box element. Under salt stress, the transgenic poplar lines overexpressing PagERF072 showed improved salt tolerance. The activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) in transgenic poplars were significantly increased relative to those of wild-type (WT) plants, whereas malondialdehyde (MDA) content showed an opposite trend. In addition, reactive oxygen species (ROS) was significantly reduced, and the expression levels of POD- and SOD-related genes were significantly increased in transgenic poplars under salt stress compared with WT. All results indicate that overexpression of the PagERF072 gene can improve the salt tolerance of transgenic poplars.