Cargando…
Different Machine Learning Approaches for Implementing Telehealth-Based Cancer Pain Management Strategies
Background: The most effective strategy for managing cancer pain remotely should be better defined. There is a need to identify those patients who require increased attention and calibrated follow-up programs. Methods: Machine learning (ML) models were developed using the data prospectively obtained...
Autores principales: | Cascella, Marco, Coluccia, Sergio, Monaco, Federica, Schiavo, Daniela, Nocerino, Davide, Grizzuti, Mariacinzia, Romano, Maria Cristina, Cuomo, Arturo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502863/ https://www.ncbi.nlm.nih.gov/pubmed/36143132 http://dx.doi.org/10.3390/jcm11185484 |
Ejemplares similares
-
Satisfaction with Telemedicine for Cancer Pain Management: A Model of Care and Cross-Sectional Patient Satisfaction Study
por: Cascella, Marco, et al.
Publicado: (2022) -
Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management
por: Cascella, Marco, et al.
Publicado: (2023) -
Pathophysiology of Nociception and Rare Genetic Disorders with Increased Pain Threshold or Pain Insensitivity
por: Cascella, Marco, et al.
Publicado: (2022) -
High-rate breakthrough cancer pain and tumour characteristics – literature review and case series
por: Cuomo, Arturo, et al.
Publicado: (2023) -
VOSviewer-Based Bibliometric Network Analysis for Evaluating Research on Juvenile Primary Fibromyalgia Syndrome (JPFS)
por: Vittori, Alessandro, et al.
Publicado: (2022)