Cargando…

The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods

Cathode materials of energy storage batteries have attracted extensive attention because of the importance in deciding the rate performance and long cycle property of batteries. Herein, we report a simple and environmentally friendly solvothermal method to prepare Zn-doped VO(2)(B) cathode materials...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Dewei, Zhang, Qijie, Chen, Xiaohong, Zhu, Penggang, Yan, Fufeng, Wang, Xuzhe, Dai, Haiyang, Chen, Jing, Gong, Gaoshang, Shang, Cui, Xie, Luogang, Zhai, Xuezhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502898/
https://www.ncbi.nlm.nih.gov/pubmed/36144984
http://dx.doi.org/10.3390/nano12183196
_version_ 1784795818156359680
author Liu, Dewei
Zhang, Qijie
Chen, Xiaohong
Zhu, Penggang
Yan, Fufeng
Wang, Xuzhe
Dai, Haiyang
Chen, Jing
Gong, Gaoshang
Shang, Cui
Xie, Luogang
Zhai, Xuezhen
author_facet Liu, Dewei
Zhang, Qijie
Chen, Xiaohong
Zhu, Penggang
Yan, Fufeng
Wang, Xuzhe
Dai, Haiyang
Chen, Jing
Gong, Gaoshang
Shang, Cui
Xie, Luogang
Zhai, Xuezhen
author_sort Liu, Dewei
collection PubMed
description Cathode materials of energy storage batteries have attracted extensive attention because of the importance in deciding the rate performance and long cycle property of batteries. Herein, we report a simple and environmentally friendly solvothermal method to prepare Zn-doped VO(2)(B) cathode materials. The introduction of zinc ions can effectively regulate the lattice structure, surface morphology and internal defect state of Zn-VO(2)(B) nano materials. The sample with Zn content x = 1.5% has smaller cell volume and grain size, and higher concentration of vacancy defects. These microstructures ensure the structural stability during ion embedding process and, thus, this sample shows excellent electrochemical performances. The capacitance retention rate still maintains 88% after 1000 cycles at the current density of 0.1 A·g(−1). The enhanced performances of Zn-doped VO(2)(B) samples may lay a foundation for the improvement of electrochemical performances of VO(2)(B) cathode materials for energy storage batteries in the future.
format Online
Article
Text
id pubmed-9502898
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95028982022-09-24 The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods Liu, Dewei Zhang, Qijie Chen, Xiaohong Zhu, Penggang Yan, Fufeng Wang, Xuzhe Dai, Haiyang Chen, Jing Gong, Gaoshang Shang, Cui Xie, Luogang Zhai, Xuezhen Nanomaterials (Basel) Article Cathode materials of energy storage batteries have attracted extensive attention because of the importance in deciding the rate performance and long cycle property of batteries. Herein, we report a simple and environmentally friendly solvothermal method to prepare Zn-doped VO(2)(B) cathode materials. The introduction of zinc ions can effectively regulate the lattice structure, surface morphology and internal defect state of Zn-VO(2)(B) nano materials. The sample with Zn content x = 1.5% has smaller cell volume and grain size, and higher concentration of vacancy defects. These microstructures ensure the structural stability during ion embedding process and, thus, this sample shows excellent electrochemical performances. The capacitance retention rate still maintains 88% after 1000 cycles at the current density of 0.1 A·g(−1). The enhanced performances of Zn-doped VO(2)(B) samples may lay a foundation for the improvement of electrochemical performances of VO(2)(B) cathode materials for energy storage batteries in the future. MDPI 2022-09-14 /pmc/articles/PMC9502898/ /pubmed/36144984 http://dx.doi.org/10.3390/nano12183196 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Dewei
Zhang, Qijie
Chen, Xiaohong
Zhu, Penggang
Yan, Fufeng
Wang, Xuzhe
Dai, Haiyang
Chen, Jing
Gong, Gaoshang
Shang, Cui
Xie, Luogang
Zhai, Xuezhen
The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods
title The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods
title_full The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods
title_fullStr The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods
title_full_unstemmed The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods
title_short The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods
title_sort lattice distortion, defect evolution and electrochemical performance improvement in zn-vo(2)(b) nanorods
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502898/
https://www.ncbi.nlm.nih.gov/pubmed/36144984
http://dx.doi.org/10.3390/nano12183196
work_keys_str_mv AT liudewei thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT zhangqijie thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT chenxiaohong thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT zhupenggang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT yanfufeng thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT wangxuzhe thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT daihaiyang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT chenjing thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT gonggaoshang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT shangcui thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT xieluogang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT zhaixuezhen thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT liudewei latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT zhangqijie latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT chenxiaohong latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT zhupenggang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT yanfufeng latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT wangxuzhe latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT daihaiyang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT chenjing latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT gonggaoshang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT shangcui latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT xieluogang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods
AT zhaixuezhen latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods