Cargando…
The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods
Cathode materials of energy storage batteries have attracted extensive attention because of the importance in deciding the rate performance and long cycle property of batteries. Herein, we report a simple and environmentally friendly solvothermal method to prepare Zn-doped VO(2)(B) cathode materials...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502898/ https://www.ncbi.nlm.nih.gov/pubmed/36144984 http://dx.doi.org/10.3390/nano12183196 |
_version_ | 1784795818156359680 |
---|---|
author | Liu, Dewei Zhang, Qijie Chen, Xiaohong Zhu, Penggang Yan, Fufeng Wang, Xuzhe Dai, Haiyang Chen, Jing Gong, Gaoshang Shang, Cui Xie, Luogang Zhai, Xuezhen |
author_facet | Liu, Dewei Zhang, Qijie Chen, Xiaohong Zhu, Penggang Yan, Fufeng Wang, Xuzhe Dai, Haiyang Chen, Jing Gong, Gaoshang Shang, Cui Xie, Luogang Zhai, Xuezhen |
author_sort | Liu, Dewei |
collection | PubMed |
description | Cathode materials of energy storage batteries have attracted extensive attention because of the importance in deciding the rate performance and long cycle property of batteries. Herein, we report a simple and environmentally friendly solvothermal method to prepare Zn-doped VO(2)(B) cathode materials. The introduction of zinc ions can effectively regulate the lattice structure, surface morphology and internal defect state of Zn-VO(2)(B) nano materials. The sample with Zn content x = 1.5% has smaller cell volume and grain size, and higher concentration of vacancy defects. These microstructures ensure the structural stability during ion embedding process and, thus, this sample shows excellent electrochemical performances. The capacitance retention rate still maintains 88% after 1000 cycles at the current density of 0.1 A·g(−1). The enhanced performances of Zn-doped VO(2)(B) samples may lay a foundation for the improvement of electrochemical performances of VO(2)(B) cathode materials for energy storage batteries in the future. |
format | Online Article Text |
id | pubmed-9502898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95028982022-09-24 The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods Liu, Dewei Zhang, Qijie Chen, Xiaohong Zhu, Penggang Yan, Fufeng Wang, Xuzhe Dai, Haiyang Chen, Jing Gong, Gaoshang Shang, Cui Xie, Luogang Zhai, Xuezhen Nanomaterials (Basel) Article Cathode materials of energy storage batteries have attracted extensive attention because of the importance in deciding the rate performance and long cycle property of batteries. Herein, we report a simple and environmentally friendly solvothermal method to prepare Zn-doped VO(2)(B) cathode materials. The introduction of zinc ions can effectively regulate the lattice structure, surface morphology and internal defect state of Zn-VO(2)(B) nano materials. The sample with Zn content x = 1.5% has smaller cell volume and grain size, and higher concentration of vacancy defects. These microstructures ensure the structural stability during ion embedding process and, thus, this sample shows excellent electrochemical performances. The capacitance retention rate still maintains 88% after 1000 cycles at the current density of 0.1 A·g(−1). The enhanced performances of Zn-doped VO(2)(B) samples may lay a foundation for the improvement of electrochemical performances of VO(2)(B) cathode materials for energy storage batteries in the future. MDPI 2022-09-14 /pmc/articles/PMC9502898/ /pubmed/36144984 http://dx.doi.org/10.3390/nano12183196 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Dewei Zhang, Qijie Chen, Xiaohong Zhu, Penggang Yan, Fufeng Wang, Xuzhe Dai, Haiyang Chen, Jing Gong, Gaoshang Shang, Cui Xie, Luogang Zhai, Xuezhen The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods |
title | The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods |
title_full | The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods |
title_fullStr | The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods |
title_full_unstemmed | The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods |
title_short | The Lattice Distortion, Defect Evolution and Electrochemical Performance Improvement in Zn-VO(2)(B) Nanorods |
title_sort | lattice distortion, defect evolution and electrochemical performance improvement in zn-vo(2)(b) nanorods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502898/ https://www.ncbi.nlm.nih.gov/pubmed/36144984 http://dx.doi.org/10.3390/nano12183196 |
work_keys_str_mv | AT liudewei thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT zhangqijie thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT chenxiaohong thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT zhupenggang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT yanfufeng thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT wangxuzhe thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT daihaiyang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT chenjing thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT gonggaoshang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT shangcui thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT xieluogang thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT zhaixuezhen thelatticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT liudewei latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT zhangqijie latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT chenxiaohong latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT zhupenggang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT yanfufeng latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT wangxuzhe latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT daihaiyang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT chenjing latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT gonggaoshang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT shangcui latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT xieluogang latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods AT zhaixuezhen latticedistortiondefectevolutionandelectrochemicalperformanceimprovementinznvo2bnanorods |