Cargando…

Ordered Domain (Raft) Formation in Asymmetric Vesicles and Its Induction upon Loss of Lipid Asymmetry in Artificial and Natural Membranes

Lipid asymmetry, the difference in the lipid composition in the inner and outer lipid monolayers (leaflets) of a membrane, is an important feature of eukaryotic plasma membranes. Investigation of the biophysical consequences of lipid asymmetry has been aided by advances in the ability to prepare art...

Descripción completa

Detalles Bibliográficos
Autor principal: London, Erwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503047/
https://www.ncbi.nlm.nih.gov/pubmed/36135889
http://dx.doi.org/10.3390/membranes12090870
Descripción
Sumario:Lipid asymmetry, the difference in the lipid composition in the inner and outer lipid monolayers (leaflets) of a membrane, is an important feature of eukaryotic plasma membranes. Investigation of the biophysical consequences of lipid asymmetry has been aided by advances in the ability to prepare artificial asymmetric membranes, especially by use of cyclodextrin-catalyzed lipid exchange. This review summarizes recent studies with artificial asymmetric membranes which have identified conditions in which asymmetry can induce or suppress the ability of membranes to form ordered domains (rafts). A consequence of the latter effect is that, under some conditions, a loss of asymmetry can induce ordered domain formation. An analogous study in plasma membrane vesicles has demonstrated that asymmetry can also suppress domain formation in natural membranes. Thus, it is possible that a loss of asymmetry can induce domain formation in vivo.