Cargando…

Biological and Molecular Characterization of the Lytic Bacteriophage SoKa against Pseudomonas syringae pv. syringae, Causal Agent of Citrus Blast and Black Pit in Tunisia

Pseudomonas syringae pv. syringae (Pss), the causal agent of citrus blast and black pit lesion of lemon fruit, continues to cause serious damage in citrus production in Tunisia. Faced with the rapid emergence of the disease and the inefficiency of conventional control methods, an alternative strateg...

Descripción completa

Detalles Bibliográficos
Autores principales: Oueslati, Maroua, Holtappels, Dominique, Fortuna, Kiandro, Hajlaoui, Mohamed Rabeh, Lavigne, Rob, Sadfi-Zouaoui, Najla, Wagemans, Jeroen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503068/
https://www.ncbi.nlm.nih.gov/pubmed/36146756
http://dx.doi.org/10.3390/v14091949
Descripción
Sumario:Pseudomonas syringae pv. syringae (Pss), the causal agent of citrus blast and black pit lesion of lemon fruit, continues to cause serious damage in citrus production in Tunisia. Faced with the rapid emergence of the disease and the inefficiency of conventional control methods, an alternative strategy based on the use of bacteriophages was pursued in this study. The lytic Pss bacteriophage SoKa was isolated from soil collected from Tunisian citrus orchards. Analysis of the host range showed that SoKa was able to lyse seven other Pss strains. Interestingly, Pseudomonas syringae pv. porri, pathogenic to leek, could also be infected by SoKa. The activity of SoKa was maintained at pH values between 2 and 10, at temperatures between −80 and 37 °C; the phage could resist UV radiation at an intensity of 320 nm up to 40 min. Whole genome sequencing revealed that the Pseudomonas phage SoKa is a novel phage that belongs to the Bifseptvirus genus of the Autographiviridae family. The absence of virulence proteins and lysogeny-associated proteins encoded on the phage genome, its anti-biofilm activity, and the significant reduction of tissue necrosis in different fruit bioassays make SoKa potentially suitable for use in phage biocontrol.