Cargando…
Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling
The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low support is provided, e.g., pelvis. New treatments aim to stimulate bone formation in compromised scenarios by using multifunctional biomaterials combined with biofabrication techniques to produce 3D str...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503128/ https://www.ncbi.nlm.nih.gov/pubmed/36145925 http://dx.doi.org/10.3390/polym14183780 |
_version_ | 1784795886141833216 |
---|---|
author | Melo, Priscila Montalbano, Giorgia Boggio, Elena Gigliotti, Casimiro Luca Dianzani, Chiara Dianzani, Umberto Vitale-Brovarone, Chiara Fiorilli, Sonia |
author_facet | Melo, Priscila Montalbano, Giorgia Boggio, Elena Gigliotti, Casimiro Luca Dianzani, Chiara Dianzani, Umberto Vitale-Brovarone, Chiara Fiorilli, Sonia |
author_sort | Melo, Priscila |
collection | PubMed |
description | The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low support is provided, e.g., pelvis. New treatments aim to stimulate bone formation in compromised scenarios by using multifunctional biomaterials combined with biofabrication techniques to produce 3D structures (scaffolds) that can support bone formation. Bone’s extracellular matrix (ECM) is mainly composed of type I collagen, making this material highly desirable in bone tissue engineering applications, and its bioactivity can be improved by incorporating specific biomolecules. In this work, type I collagen membranes were produced by electrospinning showing a fibre diameter below 200 nm. An optimized one-step strategy allowed to simultaneously crosslink the electrospun membranes and bind ICOS-Fc, a biomolecule able to reversibly inhibit osteoclast activity. The post-treatment did not alter the ECM-like nanostructure of the meshes and the physicochemical properties of collagen. UV-Vis and TGA analyses confirmed both crosslinking and grafting of ICOS-Fc onto the collagen fibres. The preservation of the biological activity of grafted ICOS-Fc was evidenced by the ability to affect the migratory activity of ICOSL-positive cells. The combination of ICOS-Fc with electrospun collagen represents a promising strategy to design multifunctional devices able to boost bone regeneration in osteoporotic fractures. |
format | Online Article Text |
id | pubmed-9503128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95031282022-09-24 Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling Melo, Priscila Montalbano, Giorgia Boggio, Elena Gigliotti, Casimiro Luca Dianzani, Chiara Dianzani, Umberto Vitale-Brovarone, Chiara Fiorilli, Sonia Polymers (Basel) Article The treatment of osteoporotic fractures is a severe clinical issue, especially in cases where low support is provided, e.g., pelvis. New treatments aim to stimulate bone formation in compromised scenarios by using multifunctional biomaterials combined with biofabrication techniques to produce 3D structures (scaffolds) that can support bone formation. Bone’s extracellular matrix (ECM) is mainly composed of type I collagen, making this material highly desirable in bone tissue engineering applications, and its bioactivity can be improved by incorporating specific biomolecules. In this work, type I collagen membranes were produced by electrospinning showing a fibre diameter below 200 nm. An optimized one-step strategy allowed to simultaneously crosslink the electrospun membranes and bind ICOS-Fc, a biomolecule able to reversibly inhibit osteoclast activity. The post-treatment did not alter the ECM-like nanostructure of the meshes and the physicochemical properties of collagen. UV-Vis and TGA analyses confirmed both crosslinking and grafting of ICOS-Fc onto the collagen fibres. The preservation of the biological activity of grafted ICOS-Fc was evidenced by the ability to affect the migratory activity of ICOSL-positive cells. The combination of ICOS-Fc with electrospun collagen represents a promising strategy to design multifunctional devices able to boost bone regeneration in osteoporotic fractures. MDPI 2022-09-09 /pmc/articles/PMC9503128/ /pubmed/36145925 http://dx.doi.org/10.3390/polym14183780 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Melo, Priscila Montalbano, Giorgia Boggio, Elena Gigliotti, Casimiro Luca Dianzani, Chiara Dianzani, Umberto Vitale-Brovarone, Chiara Fiorilli, Sonia Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling |
title | Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling |
title_full | Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling |
title_fullStr | Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling |
title_full_unstemmed | Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling |
title_short | Electrospun Collagen Scaffold Bio-Functionalized with Recombinant ICOS-Fc: An Advanced Approach to Promote Bone Remodelling |
title_sort | electrospun collagen scaffold bio-functionalized with recombinant icos-fc: an advanced approach to promote bone remodelling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503128/ https://www.ncbi.nlm.nih.gov/pubmed/36145925 http://dx.doi.org/10.3390/polym14183780 |
work_keys_str_mv | AT melopriscila electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling AT montalbanogiorgia electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling AT boggioelena electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling AT gigliotticasimiroluca electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling AT dianzanichiara electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling AT dianzaniumberto electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling AT vitalebrovaronechiara electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling AT fiorillisonia electrospuncollagenscaffoldbiofunctionalizedwithrecombinanticosfcanadvancedapproachtopromoteboneremodelling |