Cargando…
Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels
This paper characterizes laser-generated guided waves in a metal-lined composite-overwrapped pressure vessel (COPV) to assess typical damage, including interfacial debonding and low-velocity impact damage. First, an eigenfrequency approach that avoids additional coding is utilized to theoretically a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503194/ https://www.ncbi.nlm.nih.gov/pubmed/36145965 http://dx.doi.org/10.3390/polym14183823 |
_version_ | 1784795901490888704 |
---|---|
author | Zhao, Jinling Yang, Lehui Wang, Hongyuan Zhao, Jianping Li, Nian Chang, Le Ji, Hongli Qiu, Jinhao |
author_facet | Zhao, Jinling Yang, Lehui Wang, Hongyuan Zhao, Jianping Li, Nian Chang, Le Ji, Hongli Qiu, Jinhao |
author_sort | Zhao, Jinling |
collection | PubMed |
description | This paper characterizes laser-generated guided waves in a metal-lined composite-overwrapped pressure vessel (COPV) to assess typical damage, including interfacial debonding and low-velocity impact damage. First, an eigenfrequency approach that avoids additional coding is utilized to theoretically analyze the dispersion characteristics of a COPV. The theoretical results show that interfacial debonding significantly alters dispersion curves, and the wavenumber of the L(0, 1) mode is sensitive to impact damage. Experimental verifications were conducted based on the full wavefield acquired using a scanning laser-ultrasonic system with a repetition rate of 1 kHz. By comparing the experimental dispersion curves with the theoretical ones, it was found that the metal-composite interface was not bonded. In addition, a local wavenumber estimation method was established to detect the impact damage by obtaining the spatial distribution of the wavenumber of the L(0, 1) mode. |
format | Online Article Text |
id | pubmed-9503194 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95031942022-09-24 Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels Zhao, Jinling Yang, Lehui Wang, Hongyuan Zhao, Jianping Li, Nian Chang, Le Ji, Hongli Qiu, Jinhao Polymers (Basel) Article This paper characterizes laser-generated guided waves in a metal-lined composite-overwrapped pressure vessel (COPV) to assess typical damage, including interfacial debonding and low-velocity impact damage. First, an eigenfrequency approach that avoids additional coding is utilized to theoretically analyze the dispersion characteristics of a COPV. The theoretical results show that interfacial debonding significantly alters dispersion curves, and the wavenumber of the L(0, 1) mode is sensitive to impact damage. Experimental verifications were conducted based on the full wavefield acquired using a scanning laser-ultrasonic system with a repetition rate of 1 kHz. By comparing the experimental dispersion curves with the theoretical ones, it was found that the metal-composite interface was not bonded. In addition, a local wavenumber estimation method was established to detect the impact damage by obtaining the spatial distribution of the wavenumber of the L(0, 1) mode. MDPI 2022-09-13 /pmc/articles/PMC9503194/ /pubmed/36145965 http://dx.doi.org/10.3390/polym14183823 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Jinling Yang, Lehui Wang, Hongyuan Zhao, Jianping Li, Nian Chang, Le Ji, Hongli Qiu, Jinhao Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels |
title | Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels |
title_full | Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels |
title_fullStr | Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels |
title_full_unstemmed | Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels |
title_short | Laser-Generated Guided Waves for Damage Detection in Metal-Lined Composite-Overwrapped Pressure Vessels |
title_sort | laser-generated guided waves for damage detection in metal-lined composite-overwrapped pressure vessels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503194/ https://www.ncbi.nlm.nih.gov/pubmed/36145965 http://dx.doi.org/10.3390/polym14183823 |
work_keys_str_mv | AT zhaojinling lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels AT yanglehui lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels AT wanghongyuan lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels AT zhaojianping lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels AT linian lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels AT changle lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels AT jihongli lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels AT qiujinhao lasergeneratedguidedwavesfordamagedetectioninmetallinedcompositeoverwrappedpressurevessels |