Cargando…
The Expression of Follistatin-like 1 Protein Is Associated with the Activation of the EMT Program in Sjögren’s Syndrome
Background: The activation of the epithelial to mesenchymal transition (EMT) program is a pathological response of the Sjögren’s syndrome (SS) salivary glands epithelial cells (SGEC) to chronic inflammation. Follistatin-like 1 protein (FSTL1) is a secreted glycoprotein induced by transforming growth...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503234/ https://www.ncbi.nlm.nih.gov/pubmed/36143013 http://dx.doi.org/10.3390/jcm11185368 |
Sumario: | Background: The activation of the epithelial to mesenchymal transition (EMT) program is a pathological response of the Sjögren’s syndrome (SS) salivary glands epithelial cells (SGEC) to chronic inflammation. Follistatin-like 1 protein (FSTL1) is a secreted glycoprotein induced by transforming growth factor-β1 (TGF-β1), actively involved in the modulation of EMT. However, the role of FSTL1 in the EMT program activation in SS has not yet been investigated. Methods: TGF-β1-stimulated healthy human SGEC, SS SGEC, and SS salivary glands (SGs) biopsies were used to assess the effect of FSTL1 on the activation of the EMT program. FSTL1 gene activity was inhibited by the siRNA gene knockdown technique. Results: Here we reported that FSTL1 is up-regulated in SS SGs tissue in a correlated manner with the inflammatory grade. Blockage of FSTL1 gene expression by siRNA negatively modulates the TGF-β1-induced EMT program in vitro. We discovered that these actions were mediated through the modulation of the SMAD2/3-dependent EMT signaling pathway. Conclusions: Our data suggest that the TGF-β1-FSTL1-SMAD2/3 regulatory circuit plays a key role in the regulation of EMT in SS and targeting FSTL1 may be a strategy for the treatment of SGs EMT-dependent fibrosis. |
---|