Cargando…
A novel dynamic Bayesian network approach for data mining and survival data analysis
BACKGROUND: Censorship is the primary challenge in survival modeling, especially in human health studies. The classical methods have been limited by applications like Kaplan–Meier or restricted assumptions like the Cox regression model. On the other hand, Machine learning algorithms commonly rely on...
Autores principales: | Sheidaei, Ali, Foroushani, Abbas Rahimi, Gohari, Kimiya, Zeraati, Hojjat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503243/ https://www.ncbi.nlm.nih.gov/pubmed/36138394 http://dx.doi.org/10.1186/s12911-022-02000-7 |
Ejemplares similares
-
A Bayesian latent class extension of naive Bayesian classifier and its application to the classification of gastric cancer patients
por: Gohari, Kimiya, et al.
Publicado: (2023) -
Chronic Obstructive Pulmonary Disease: Novel Genes
Detection with Penalized Logistic Regression
por: Gohari, Kimiya, et al.
Publicado: (2023) -
Clustering of countries according to the COVID-19 incidence and mortality rates
por: Gohari, Kimiya, et al.
Publicado: (2022) -
Prognostic factors of survival time after hematopoietic stem cell transplant in acute lymphoblastic leukemia patients: Cox proportional hazard versus accelerated failure time models
por: Sayehmiri, Kourosh, et al.
Publicado: (2008) -
Multi-State Survival Analysis in Renal Transplantation Recipients
por: MIRZAEE, Moghaddameh, et al.
Publicado: (2014)