Cargando…
Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA
The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this st...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503305/ https://www.ncbi.nlm.nih.gov/pubmed/36144405 http://dx.doi.org/10.3390/microorganisms10091804 |
_version_ | 1784795930512326656 |
---|---|
author | Sowah, Robert A. Molina, Marirosa Georgacopoulos, Ourania Snyder, Blake Cyterski, Mike |
author_facet | Sowah, Robert A. Molina, Marirosa Georgacopoulos, Ourania Snyder, Blake Cyterski, Mike |
author_sort | Sowah, Robert A. |
collection | PubMed |
description | The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams. |
format | Online Article Text |
id | pubmed-9503305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95033052022-09-24 Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA Sowah, Robert A. Molina, Marirosa Georgacopoulos, Ourania Snyder, Blake Cyterski, Mike Microorganisms Article The spread of antibiotic resistance genes (ARGs) in the aquatic environment is an emerging concern in the interest of protecting public health. Stemming the environmental dissemination of ARGs will require a better understanding of the sources and drivers of ARGs in the water environment. In this study, we used direct measurement of sewage-associated molecular markers, the class 1 integron gene, standard water quality parameters, and watershed characteristics to evaluate the sources and drivers of ARGs in an urban watershed impacted by a gradient of human activities. Quantitative polymerase chain reaction (qPCR) was used to quantify the abundance of the sewage-associated HF183, the E. coli fecal indicator, class 1 integron gene (int1), and the ARGs sulI, sulII, tetW, tetM, ampC, and blaSHV in stream water samples collected from the Proctor Creek watershed in Atlanta, Georgia. Our findings show that ARGs were widely distributed, with detection frequencies of 96% (sulI and sulII), 82% (tetW and tetM), and 49% (ampC and blaSHV). All the ARGs were positively and significantly correlated (r > 0.5) with the HF183 and E. coli markers. Non-linear machine learning models developed using generalized boosting show that more than 70% of the variation in ARG loads in the watershed could be explained by fecal source loading, with other factors such as class 1 integron, which is associated with acquired antibiotic resistance, and environmental factors contributing < 30% to ARG variation. These results suggest that input from fecal sources is a more critical driver of ARG dissemination than environmental stressors or horizontal gene transfer in aquatic environments highly impacted by anthropogenic pollution. Finally, our results provide local watershed managers and stakeholders with information to mitigate the burden of ARGs and fecal bacteria in urban streams. MDPI 2022-09-08 /pmc/articles/PMC9503305/ /pubmed/36144405 http://dx.doi.org/10.3390/microorganisms10091804 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sowah, Robert A. Molina, Marirosa Georgacopoulos, Ourania Snyder, Blake Cyterski, Mike Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA |
title | Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA |
title_full | Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA |
title_fullStr | Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA |
title_full_unstemmed | Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA |
title_short | Sources and Drivers of ARGs in Urban Streams in Atlanta, Georgia, USA |
title_sort | sources and drivers of args in urban streams in atlanta, georgia, usa |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503305/ https://www.ncbi.nlm.nih.gov/pubmed/36144405 http://dx.doi.org/10.3390/microorganisms10091804 |
work_keys_str_mv | AT sowahroberta sourcesanddriversofargsinurbanstreamsinatlantageorgiausa AT molinamarirosa sourcesanddriversofargsinurbanstreamsinatlantageorgiausa AT georgacopoulosourania sourcesanddriversofargsinurbanstreamsinatlantageorgiausa AT snyderblake sourcesanddriversofargsinurbanstreamsinatlantageorgiausa AT cyterskimike sourcesanddriversofargsinurbanstreamsinatlantageorgiausa |