Cargando…
Binding of Natural Inhibitors to Respiratory Complex I
NADH:ubiquinone oxidoreductase (respiratory complex I) is a redox-driven proton pump with a central role in mitochondrial oxidative phosphorylation. The ubiquinone reduction site of complex I is located in the matrix arm of this large protein complex and connected to the membrane via a tunnel. A var...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503403/ https://www.ncbi.nlm.nih.gov/pubmed/36145309 http://dx.doi.org/10.3390/ph15091088 |
Sumario: | NADH:ubiquinone oxidoreductase (respiratory complex I) is a redox-driven proton pump with a central role in mitochondrial oxidative phosphorylation. The ubiquinone reduction site of complex I is located in the matrix arm of this large protein complex and connected to the membrane via a tunnel. A variety of chemically diverse compounds are known to inhibit ubiquinone reduction by complex I. Rotenone, piericidin A, and annonaceous acetogenins are representatives of complex I inhibitors from biological sources. The structure of complex I is determined at high resolution, and inhibitor binding sites are described in detail. In this review, we summarize the state of knowledge of how natural inhibitors bind in the Q reduction site and the Q access pathway and how their inhibitory mechanisms compare with that of a synthetic anti-cancer agent. |
---|