Cargando…
Enhancing Toughness of PLA/ZrP Nanocomposite through Reactive Melt-Mixing by Ethylene-Methyl Acrylate-Glycidyl Methacrylate Copolymer
The nanofiller zirconium phosphate (ZrP) was mixed into poly(lactic acid) (PLA) to ameliorate its thermal stability. The elastomer ethylene-methyl acrylate-glycidyl methacrylate copolymer (E-MA-GMA) was introduced into the PLA/ZrP nanocomposite through melt-mixing to improve its toughness and obtain...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503416/ https://www.ncbi.nlm.nih.gov/pubmed/36145893 http://dx.doi.org/10.3390/polym14183748 |
Sumario: | The nanofiller zirconium phosphate (ZrP) was mixed into poly(lactic acid) (PLA) to ameliorate its thermal stability. The elastomer ethylene-methyl acrylate-glycidyl methacrylate copolymer (E-MA-GMA) was introduced into the PLA/ZrP nanocomposite through melt-mixing to improve its toughness and obtain a super-tough PLA/ZrP/E-MA-GMA nanocomposite. The impact strength of the PLA/ZrP/E-MA-GMA nanocomposite, with a composition ratio of 72/3/25, was improved to 71.5 kJ/m(2), about 25 times greater than the impact strength of pure PLA. The dynamic mechanical analysis (DMA) confirmed that E-MA-GMA has excellent compatibility with the matrix of PLA. A typical core–shell structure that can cause massive shear-yielding deformation was characterized by transmission electron microscopy (TEM), which gave the nanocomposite excellent toughness. |
---|