Cargando…
General Strategy toward Laser Single-Step Generation of Multiscale Anti-Reflection Structures by Marangoni Effect
The anti-reflection of transparent material surfaces has attracted great attention due to its potential applications. In this paper, a single-step controllable method based on an infrared femtosecond laser is proposed for self-generation multiscale anti-reflection structures on glass. The multiscale...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503492/ https://www.ncbi.nlm.nih.gov/pubmed/36144114 http://dx.doi.org/10.3390/mi13091491 |
Sumario: | The anti-reflection of transparent material surfaces has attracted great attention due to its potential applications. In this paper, a single-step controllable method based on an infrared femtosecond laser is proposed for self-generation multiscale anti-reflection structures on glass. The multiscale composite structure with ridge structures and laser-induced nano-textures is generated by the Marangoni effect. By optimizing the laser parameters, multiscale structure with broadband anti-reflection enhancement is achieved. Meanwhile, the sample exhibits good anti-glare performance under strong light. The results show that the average reflectance of the laser-textured glass in the 300–800 nm band is reduced by 45.5% compared with the unprocessed glass. This work provides a simple and general strategy for fabricating anti-reflection structures and expands the potential applications of laser-textured glass in various optical components, display devices, and anti-glare glasses. |
---|