Cargando…
Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans
The increasing resistance of human pathogens promotes the development of novel antimicrobial agents. Due to the physical bactericidal mechanism of membrane disruption, antimicrobial peptides are considered as potential therapeutic candidates without inducing microbial resistance. Scorpion venom-deri...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503518/ https://www.ncbi.nlm.nih.gov/pubmed/36145681 http://dx.doi.org/10.3390/pharmaceutics14091937 |
_version_ | 1784795983389917184 |
---|---|
author | Song, Chenghua Wen, Ruichao Zhou, Jiaxuan Zeng, Xiaoyan Kou, Zi Zhang, Jia Wang, Tao Chang, Pengkang Lv, Yi Wu, Rongqian |
author_facet | Song, Chenghua Wen, Ruichao Zhou, Jiaxuan Zeng, Xiaoyan Kou, Zi Zhang, Jia Wang, Tao Chang, Pengkang Lv, Yi Wu, Rongqian |
author_sort | Song, Chenghua |
collection | PubMed |
description | The increasing resistance of human pathogens promotes the development of novel antimicrobial agents. Due to the physical bactericidal mechanism of membrane disruption, antimicrobial peptides are considered as potential therapeutic candidates without inducing microbial resistance. Scorpion venom-derived peptide, Androctonus amoreuxi Antimicrobial Peptide 1 (AamAP1), has been proved to have broad-spectrum antimicrobial properties. However, AamAP1 can induce hemolysis and shows strong toxicity against mammalian cells. Herein, the antimicrobial activity and mechanism of a novel synthetic antimicrobial peptide, GK-19, derived from AamAP1 and its derivatives, was evaluated. Five bacteria and three fungi were used to evaluate the antimicrobial effects of GK-19 in vitro. Scalded mice models combined with skin and soft tissue infections (SSTIs) were used to evaluate its applicability. The results indicated that GK-19 could not only inhibit Gram-positive and Gram-negative bacterial growth, but also kill fungi by disrupting the microbial cell membrane. Meanwhile, GK-19 showed negligible toxicity to mammalian cells, low hemolytic activity and high stability in plasma. Furthermore, in scalded mice models combined with SSTIs induced by either Methicillin-Resistant Staphylococcus aureus (MRSA) or Candida albicans, GK-19 showed significant antimicrobial and healing effects. Overall, it was demonstrated that GK-19 might be a promising drug candidate in the battle against drug-resistant bacterial and fungal infections. |
format | Online Article Text |
id | pubmed-9503518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95035182022-09-24 Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans Song, Chenghua Wen, Ruichao Zhou, Jiaxuan Zeng, Xiaoyan Kou, Zi Zhang, Jia Wang, Tao Chang, Pengkang Lv, Yi Wu, Rongqian Pharmaceutics Article The increasing resistance of human pathogens promotes the development of novel antimicrobial agents. Due to the physical bactericidal mechanism of membrane disruption, antimicrobial peptides are considered as potential therapeutic candidates without inducing microbial resistance. Scorpion venom-derived peptide, Androctonus amoreuxi Antimicrobial Peptide 1 (AamAP1), has been proved to have broad-spectrum antimicrobial properties. However, AamAP1 can induce hemolysis and shows strong toxicity against mammalian cells. Herein, the antimicrobial activity and mechanism of a novel synthetic antimicrobial peptide, GK-19, derived from AamAP1 and its derivatives, was evaluated. Five bacteria and three fungi were used to evaluate the antimicrobial effects of GK-19 in vitro. Scalded mice models combined with skin and soft tissue infections (SSTIs) were used to evaluate its applicability. The results indicated that GK-19 could not only inhibit Gram-positive and Gram-negative bacterial growth, but also kill fungi by disrupting the microbial cell membrane. Meanwhile, GK-19 showed negligible toxicity to mammalian cells, low hemolytic activity and high stability in plasma. Furthermore, in scalded mice models combined with SSTIs induced by either Methicillin-Resistant Staphylococcus aureus (MRSA) or Candida albicans, GK-19 showed significant antimicrobial and healing effects. Overall, it was demonstrated that GK-19 might be a promising drug candidate in the battle against drug-resistant bacterial and fungal infections. MDPI 2022-09-13 /pmc/articles/PMC9503518/ /pubmed/36145681 http://dx.doi.org/10.3390/pharmaceutics14091937 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Chenghua Wen, Ruichao Zhou, Jiaxuan Zeng, Xiaoyan Kou, Zi Zhang, Jia Wang, Tao Chang, Pengkang Lv, Yi Wu, Rongqian Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans |
title | Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans |
title_full | Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans |
title_fullStr | Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans |
title_full_unstemmed | Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans |
title_short | Antibacterial and Antifungal Properties of a Novel Antimicrobial Peptide GK-19 and Its Application in Skin and Soft Tissue Infections Induced by MRSA or Candida albicans |
title_sort | antibacterial and antifungal properties of a novel antimicrobial peptide gk-19 and its application in skin and soft tissue infections induced by mrsa or candida albicans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503518/ https://www.ncbi.nlm.nih.gov/pubmed/36145681 http://dx.doi.org/10.3390/pharmaceutics14091937 |
work_keys_str_mv | AT songchenghua antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT wenruichao antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT zhoujiaxuan antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT zengxiaoyan antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT kouzi antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT zhangjia antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT wangtao antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT changpengkang antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT lvyi antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans AT wurongqian antibacterialandantifungalpropertiesofanovelantimicrobialpeptidegk19anditsapplicationinskinandsofttissueinfectionsinducedbymrsaorcandidaalbicans |