Cargando…
Finetuned Super-Resolution Generative Adversarial Network (Artificial Intelligence) Model for Calcium Deblooming in Coronary Computed Tomography Angiography
The purpose of this study was to finetune a deep learning model, real-enhanced super-resolution generative adversarial network (Real-ESRGAN), and investigate its diagnostic value in calcified coronary plaques with the aim of suppressing blooming artifacts for the further improvement of coronary lume...
Autores principales: | Sun, Zhonghua, Ng, Curtise K. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503533/ https://www.ncbi.nlm.nih.gov/pubmed/36143139 http://dx.doi.org/10.3390/jpm12091354 |
Ejemplares similares
-
Artificial Intelligence (Enhanced Super-Resolution Generative Adversarial Network) for Calcium Deblooming in Coronary Computed Tomography Angiography: A Feasibility Study
por: Sun, Zhonghua, et al.
Publicado: (2022) -
Generative Adversarial Network (Generative Artificial Intelligence) in Pediatric Radiology: A Systematic Review
por: Ng, Curtise K. C.
Publicado: (2023) -
Coronary CT Angiography in Heavily Calcified Coronary Arteries: Improvement of Coronary Lumen Visualization and Coronary Stenosis Assessment With Image Postprocessing Methods
por: Sun, Zhonghua, et al.
Publicado: (2015) -
Artificial Intelligence in Coronary Computed Tomography Angiography: From Anatomy to Prognosis
por: Muscogiuri, Giuseppe, et al.
Publicado: (2020) -
Artificial Intelligence for Radiation Dose Optimization in Pediatric Radiology: A Systematic Review
por: Ng, Curtise K. C.
Publicado: (2022)