Cargando…
Examining the Prevailing Negative Sentiments Related to COVID-19 Vaccination: Unsupervised Deep Learning of Twitter Posts over a 16 Month Period
Despite the demonstrated efficacy, safety, and availability of COVID-19 vaccines, efforts in global mass vaccination have been met with widespread scepticism and vaccine hesitancy or refusal. Understanding the reasons for the public’s negative opinions towards COVID-19 vaccination using Twitter may...
Autores principales: | Ng, Qin Xiang, Lim, Shu Rong, Yau, Chun En, Liew, Tau Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503543/ https://www.ncbi.nlm.nih.gov/pubmed/36146535 http://dx.doi.org/10.3390/vaccines10091457 |
Ejemplares similares
-
Examining the Negative Sentiments Related to Influenza Vaccination from 2017 to 2022: An Unsupervised Deep Learning Analysis of 261,613 Twitter Posts
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining the Public Messaging on ‘Loneliness’ over Social Media: An Unsupervised Machine Learning Analysis of Twitter Posts over the Past Decade
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Public sentiment on the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182 twitter posts
por: Ng, Q.X., et al.
Publicado: (2022) -
Public perception on 'healthy ageing' in the past decade: An unsupervised machine learning of 63,809 Twitter posts
por: Ng, Qin Xiang, et al.
Publicado: (2023) -
Examining Public Messaging on Influenza Vaccine over Social Media: Unsupervised Deep Learning of 235,261 Twitter Posts from 2017 to 2023
por: Ng, Qin Xiang, et al.
Publicado: (2023)