Cargando…
Unsupervised Person Re-Identification with Attention-Guided Fine-Grained Features and Symmetric Contrast Learning
Unsupervised person re-identification has attracted a lot of attention due to its strong potential to adapt to new environments without manual annotation, but learning to recognise features in disjoint camera views without annotation is still challenging. Existing studies tend to ignore the optimisa...
Autores principales: | Wu, Yongzhi, Yang, Wenzhong, Wang, Mengting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503568/ https://www.ncbi.nlm.nih.gov/pubmed/36146326 http://dx.doi.org/10.3390/s22186978 |
Ejemplares similares
-
Mask-Guided Region Attention Network for Person Re-Identification
por: Zhou, Cong, et al.
Publicado: (2020) -
Stable Median Centre Clustering for Unsupervised Domain Adaptation Person Re-Identification
por: Guo, Jifeng, et al.
Publicado: (2021) -
Discriminatively Unsupervised Learning Person Re-Identification via Considering Complicated Images
por: Quan, Rong, et al.
Publicado: (2023) -
Dual Branch Attention Network for Person Re-Identification
por: Fan, Denghua, et al.
Publicado: (2021) -
Stochastic attentions and context learning for person re-identification
por: Perwaiz, Nazia, et al.
Publicado: (2021)