Cargando…

Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods

Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Antúnez-Muiños, Pablo, Vicente-Palacios, Víctor, Pérez-Sánchez, Pablo, Sampedro-Gómez, Jesús, Sánchez-Puente, Antonio, Dorado-Díaz, Pedro Ignacio, Nombela-Franco, Luis, Salinas, Pablo, Gutiérrez-García, Hipólito, Amat-Santos, Ignacio, Peral, Vicente, Morcuende, Antonio, Asmarats, Lluis, Freixa, Xavier, Regueiro, Ander, Caneiro-Queija, Berenice, Estevez-Loureiro, Rodrigo, Rodés-Cabau, Josep, Sánchez, Pedro Luis, Cruz-González, Ignacio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503612/
https://www.ncbi.nlm.nih.gov/pubmed/36143197
http://dx.doi.org/10.3390/jpm12091413
_version_ 1784796008783282176
author Antúnez-Muiños, Pablo
Vicente-Palacios, Víctor
Pérez-Sánchez, Pablo
Sampedro-Gómez, Jesús
Sánchez-Puente, Antonio
Dorado-Díaz, Pedro Ignacio
Nombela-Franco, Luis
Salinas, Pablo
Gutiérrez-García, Hipólito
Amat-Santos, Ignacio
Peral, Vicente
Morcuende, Antonio
Asmarats, Lluis
Freixa, Xavier
Regueiro, Ander
Caneiro-Queija, Berenice
Estevez-Loureiro, Rodrigo
Rodés-Cabau, Josep
Sánchez, Pedro Luis
Cruz-González, Ignacio
author_facet Antúnez-Muiños, Pablo
Vicente-Palacios, Víctor
Pérez-Sánchez, Pablo
Sampedro-Gómez, Jesús
Sánchez-Puente, Antonio
Dorado-Díaz, Pedro Ignacio
Nombela-Franco, Luis
Salinas, Pablo
Gutiérrez-García, Hipólito
Amat-Santos, Ignacio
Peral, Vicente
Morcuende, Antonio
Asmarats, Lluis
Freixa, Xavier
Regueiro, Ander
Caneiro-Queija, Berenice
Estevez-Loureiro, Rodrigo
Rodés-Cabau, Josep
Sánchez, Pedro Luis
Cruz-González, Ignacio
author_sort Antúnez-Muiños, Pablo
collection PubMed
description Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, and to the best of our knowledge, machine learning techniques have not been used yet for thrombus detection after LAA occlusion. Our aim is to compare both methodologies with respect to predictive power and the search for predictors of DRT. To this end, a multicenter study including 1150 patients who underwent LAA closure was analyzed. Two lines of experiments were performed: with and without resampling. Multivariate and machine learning methodologies were applied to both lines. Predictive power and the extracted predictors for all experiments were gathered. ROC curves of 0.5446 and 0.7974 were obtained for multivariate analysis and machine learning without resampling, respectively. However, the resampling experiment showed no significant difference between them (0.52 vs. 0.53 ROC AUC). A difference between the predictors selected was observed, with the multivariable methodology being more stable. These results question the validity of predictors reported in previous studies and demonstrate their disparity. Furthermore, none of the techniques analyzed is superior to the other for these data.
format Online
Article
Text
id pubmed-9503612
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95036122022-09-24 Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods Antúnez-Muiños, Pablo Vicente-Palacios, Víctor Pérez-Sánchez, Pablo Sampedro-Gómez, Jesús Sánchez-Puente, Antonio Dorado-Díaz, Pedro Ignacio Nombela-Franco, Luis Salinas, Pablo Gutiérrez-García, Hipólito Amat-Santos, Ignacio Peral, Vicente Morcuende, Antonio Asmarats, Lluis Freixa, Xavier Regueiro, Ander Caneiro-Queija, Berenice Estevez-Loureiro, Rodrigo Rodés-Cabau, Josep Sánchez, Pedro Luis Cruz-González, Ignacio J Pers Med Article Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, and to the best of our knowledge, machine learning techniques have not been used yet for thrombus detection after LAA occlusion. Our aim is to compare both methodologies with respect to predictive power and the search for predictors of DRT. To this end, a multicenter study including 1150 patients who underwent LAA closure was analyzed. Two lines of experiments were performed: with and without resampling. Multivariate and machine learning methodologies were applied to both lines. Predictive power and the extracted predictors for all experiments were gathered. ROC curves of 0.5446 and 0.7974 were obtained for multivariate analysis and machine learning without resampling, respectively. However, the resampling experiment showed no significant difference between them (0.52 vs. 0.53 ROC AUC). A difference between the predictors selected was observed, with the multivariable methodology being more stable. These results question the validity of predictors reported in previous studies and demonstrate their disparity. Furthermore, none of the techniques analyzed is superior to the other for these data. MDPI 2022-08-30 /pmc/articles/PMC9503612/ /pubmed/36143197 http://dx.doi.org/10.3390/jpm12091413 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Antúnez-Muiños, Pablo
Vicente-Palacios, Víctor
Pérez-Sánchez, Pablo
Sampedro-Gómez, Jesús
Sánchez-Puente, Antonio
Dorado-Díaz, Pedro Ignacio
Nombela-Franco, Luis
Salinas, Pablo
Gutiérrez-García, Hipólito
Amat-Santos, Ignacio
Peral, Vicente
Morcuende, Antonio
Asmarats, Lluis
Freixa, Xavier
Regueiro, Ander
Caneiro-Queija, Berenice
Estevez-Loureiro, Rodrigo
Rodés-Cabau, Josep
Sánchez, Pedro Luis
Cruz-González, Ignacio
Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_full Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_fullStr Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_full_unstemmed Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_short Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
title_sort predictive power for thrombus detection after atrial appendage closure: machine learning vs. classical methods
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503612/
https://www.ncbi.nlm.nih.gov/pubmed/36143197
http://dx.doi.org/10.3390/jpm12091413
work_keys_str_mv AT antunezmuinospablo predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT vicentepalaciosvictor predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT perezsanchezpablo predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT sampedrogomezjesus predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT sanchezpuenteantonio predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT doradodiazpedroignacio predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT nombelafrancoluis predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT salinaspablo predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT gutierrezgarciahipolito predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT amatsantosignacio predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT peralvicente predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT morcuendeantonio predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT asmaratslluis predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT freixaxavier predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT regueiroander predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT caneiroqueijaberenice predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT estevezloureirorodrigo predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT rodescabaujosep predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT sanchezpedroluis predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods
AT cruzgonzalezignacio predictivepowerforthrombusdetectionafteratrialappendageclosuremachinelearningvsclassicalmethods