Cargando…
Absolute Camera Pose Regression Using an RGB-D Dual-Stream Network and Handcrafted Base Poses
Absolute pose regression (APR) for camera localization is a single-shot approach that encodes the information of a 3D scene in an end-to-end neural network. The camera pose result of APR methods can be observed as the linear combination of the base poses. Previous APR methods’ base poses are learned...
Autores principales: | Kao, Peng-Yuan, Zhang, Rong-Rong, Chen, Timothy, Hung, Yi-Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503637/ https://www.ncbi.nlm.nih.gov/pubmed/36146335 http://dx.doi.org/10.3390/s22186971 |
Ejemplares similares
-
Dynamic Pose Estimation Using Multiple RGB-D Cameras
por: Hong, Sungjin, et al.
Publicado: (2018) -
Resolving Position Ambiguity of IMU-Based Human Pose with a Single RGB Camera
por: Kaichi, Tomoya, et al.
Publicado: (2020) -
Pose-Invariant Face Recognition via RGB-D Images
por: Sang, Gaoli, et al.
Publicado: (2016) -
Face Pose Alignment with Event Cameras
por: Savran, Arman, et al.
Publicado: (2020) -
A Unified Deep Framework for Joint 3D Pose Estimation and Action Recognition from a Single RGB Camera
por: Pham, Huy Hieu, et al.
Publicado: (2020)