Cargando…
Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana
The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses to different abiotic stresses, such as salt, cold, and drought. In the present study, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503638/ https://www.ncbi.nlm.nih.gov/pubmed/36142448 http://dx.doi.org/10.3390/ijms231810538 |
_version_ | 1784796015509897216 |
---|---|
author | Li, Wenhui Zhong, Jiliang Zhang, Lihua Wang, Yu Song, Penghui Liu, Wanda Li, Xingguo Han, Deguo |
author_facet | Li, Wenhui Zhong, Jiliang Zhang, Lihua Wang, Yu Song, Penghui Liu, Wanda Li, Xingguo Han, Deguo |
author_sort | Li, Wenhui |
collection | PubMed |
description | The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses to different abiotic stresses, such as salt, cold, and drought. In the present study, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB82. The open reading frame (ORF) of FvMYB82 was found to be 960 bp, encoding 319 amino acids. Sequence alignment results and predictions of the protein structure indicated that the FvMYB82 contained the conserved R2R3-MYB domain. Subcellular localization analysis showed that FvMYB82 was localized onto the nucleus. Furthermore, the qPCR showed that the expression level of FvMYB82 was higher in new leaves and roots than in mature leaves and stems. When dealing with different stresses, the expression level of FvMYB82 in F. vesca seedlings changed markedly, especially for salt and cold stress. When FvMYB82 was introduced into Arabidopsis thaliana, the tolerances to salt and cold stress of FvMYB82-OE A. thaliana were greatly improved. When dealt with salt and cold treatments, compared with wild-type and unloaded line (UL) A. thaliana, the transgenic lines had higher contents of proline and chlorophyll, as well as higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the transgenic A. thaliana had lower level of malondialdehyde (MDA) and electrolytic leakage (EL) than wild-type and UL A. thaliana under salt and cold stress. Meanwhile, FvMYB82 can also regulate the expression of downstream genes associated with salt stress (AtSnRK2.4, AtSnRK2.6, AtKUP6, and AtNCED3) and cold stress (AtCBF1, AtCBF2, AtCOR15a, and AtCOR78). Therefore, these results indicated that FvMYB82 probably plays an important role in the response to salt and cold stresses in A. thaliana by regulating downstream related genes. |
format | Online Article Text |
id | pubmed-9503638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95036382022-09-24 Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana Li, Wenhui Zhong, Jiliang Zhang, Lihua Wang, Yu Song, Penghui Liu, Wanda Li, Xingguo Han, Deguo Int J Mol Sci Article The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses to different abiotic stresses, such as salt, cold, and drought. In the present study, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB82. The open reading frame (ORF) of FvMYB82 was found to be 960 bp, encoding 319 amino acids. Sequence alignment results and predictions of the protein structure indicated that the FvMYB82 contained the conserved R2R3-MYB domain. Subcellular localization analysis showed that FvMYB82 was localized onto the nucleus. Furthermore, the qPCR showed that the expression level of FvMYB82 was higher in new leaves and roots than in mature leaves and stems. When dealing with different stresses, the expression level of FvMYB82 in F. vesca seedlings changed markedly, especially for salt and cold stress. When FvMYB82 was introduced into Arabidopsis thaliana, the tolerances to salt and cold stress of FvMYB82-OE A. thaliana were greatly improved. When dealt with salt and cold treatments, compared with wild-type and unloaded line (UL) A. thaliana, the transgenic lines had higher contents of proline and chlorophyll, as well as higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the transgenic A. thaliana had lower level of malondialdehyde (MDA) and electrolytic leakage (EL) than wild-type and UL A. thaliana under salt and cold stress. Meanwhile, FvMYB82 can also regulate the expression of downstream genes associated with salt stress (AtSnRK2.4, AtSnRK2.6, AtKUP6, and AtNCED3) and cold stress (AtCBF1, AtCBF2, AtCOR15a, and AtCOR78). Therefore, these results indicated that FvMYB82 probably plays an important role in the response to salt and cold stresses in A. thaliana by regulating downstream related genes. MDPI 2022-09-11 /pmc/articles/PMC9503638/ /pubmed/36142448 http://dx.doi.org/10.3390/ijms231810538 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Wenhui Zhong, Jiliang Zhang, Lihua Wang, Yu Song, Penghui Liu, Wanda Li, Xingguo Han, Deguo Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana |
title | Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana |
title_full | Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana |
title_fullStr | Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana |
title_full_unstemmed | Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana |
title_short | Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana |
title_sort | overexpression of a fragaria vesca myb transcription factor gene (fvmyb82) increases salt and cold tolerance in arabidopsis thaliana |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503638/ https://www.ncbi.nlm.nih.gov/pubmed/36142448 http://dx.doi.org/10.3390/ijms231810538 |
work_keys_str_mv | AT liwenhui overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana AT zhongjiliang overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana AT zhanglihua overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana AT wangyu overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana AT songpenghui overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana AT liuwanda overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana AT lixingguo overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana AT handeguo overexpressionofafragariavescamybtranscriptionfactorgenefvmyb82increasessaltandcoldtoleranceinarabidopsisthaliana |