Cargando…
Machine Learning Models for Identification and Prediction of Toxic Organic Compounds Using Daphnia magna Transcriptomic Profiles
A wide range of environmental factors heavily impact aquatic ecosystems, in turn, affecting human health. Toxic organic compounds resulting from anthropogenic activity are a source of pollution in aquatic ecosystems. To evaluate these contaminants, current approaches mainly rely on acute and chronic...
Autores principales: | Choi, Tae-June, An, Hyung-Eun, Kim, Chang-Bae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503646/ https://www.ncbi.nlm.nih.gov/pubmed/36143479 http://dx.doi.org/10.3390/life12091443 |
Ejemplares similares
-
Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna
por: Asghari, Saba, et al.
Publicado: (2012) -
Hemoglobin Levels Modulate Nitrite Toxicity to Daphnia magna
por: Eytcheson, Stephanie A., et al.
Publicado: (2018) -
Influence of water hardness on zinc toxicity in
Daphnia magna
por: Paylar, Berkay, et al.
Publicado: (2022) -
Toxicities of Four Parabens and Their Mixtures to Daphnia magna and Aliivibrio fischeri
por: Lee, Jaewoong, et al.
Publicado: (2018) -
Intraspecific Variation in Microsatellite Mutation Profiles in Daphnia magna
por: Ho, Eddie K H, et al.
Publicado: (2019)