Cargando…

Statistical Classification for Raman Spectra of Tumoral Genomic DNA

We exploit Surface-Enhanced Raman Scattering (SERS) to investigate aqueous droplets of genomic DNA deposited onto silver-coated silicon nanowires, and we show that it is possible to efficiently discriminate between spectra of tumoral and healthy cells. To assess the robustness of the proposed techni...

Descripción completa

Detalles Bibliográficos
Autores principales: Durastanti, Claudio, Cirillo, Emilio N. M., De Benedictis, Ilaria, Ledda, Mario, Sciortino, Antonio, Lisi, Antonella, Convertino, Annalisa, Mussi, Valentina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503739/
https://www.ncbi.nlm.nih.gov/pubmed/36144012
http://dx.doi.org/10.3390/mi13091388
_version_ 1784796040308719616
author Durastanti, Claudio
Cirillo, Emilio N. M.
De Benedictis, Ilaria
Ledda, Mario
Sciortino, Antonio
Lisi, Antonella
Convertino, Annalisa
Mussi, Valentina
author_facet Durastanti, Claudio
Cirillo, Emilio N. M.
De Benedictis, Ilaria
Ledda, Mario
Sciortino, Antonio
Lisi, Antonella
Convertino, Annalisa
Mussi, Valentina
author_sort Durastanti, Claudio
collection PubMed
description We exploit Surface-Enhanced Raman Scattering (SERS) to investigate aqueous droplets of genomic DNA deposited onto silver-coated silicon nanowires, and we show that it is possible to efficiently discriminate between spectra of tumoral and healthy cells. To assess the robustness of the proposed technique, we develop two different statistical approaches, one based on the Principal Components Analysis of spectral data and one based on the computation of the [Formula: see text] distance between spectra. Both methods prove to be highly efficient, and we test their accuracy via the Cohen’s [Formula: see text] statistics. We show that the synergistic combination of the SERS spectroscopy and the statistical analysis methods leads to efficient and fast cancer diagnostic applications allowing rapid and unexpansive discrimination between healthy and tumoral genomic DNA alternative to the more complex and expensive DNA sequencing.
format Online
Article
Text
id pubmed-9503739
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95037392022-09-24 Statistical Classification for Raman Spectra of Tumoral Genomic DNA Durastanti, Claudio Cirillo, Emilio N. M. De Benedictis, Ilaria Ledda, Mario Sciortino, Antonio Lisi, Antonella Convertino, Annalisa Mussi, Valentina Micromachines (Basel) Article We exploit Surface-Enhanced Raman Scattering (SERS) to investigate aqueous droplets of genomic DNA deposited onto silver-coated silicon nanowires, and we show that it is possible to efficiently discriminate between spectra of tumoral and healthy cells. To assess the robustness of the proposed technique, we develop two different statistical approaches, one based on the Principal Components Analysis of spectral data and one based on the computation of the [Formula: see text] distance between spectra. Both methods prove to be highly efficient, and we test their accuracy via the Cohen’s [Formula: see text] statistics. We show that the synergistic combination of the SERS spectroscopy and the statistical analysis methods leads to efficient and fast cancer diagnostic applications allowing rapid and unexpansive discrimination between healthy and tumoral genomic DNA alternative to the more complex and expensive DNA sequencing. MDPI 2022-08-25 /pmc/articles/PMC9503739/ /pubmed/36144012 http://dx.doi.org/10.3390/mi13091388 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Durastanti, Claudio
Cirillo, Emilio N. M.
De Benedictis, Ilaria
Ledda, Mario
Sciortino, Antonio
Lisi, Antonella
Convertino, Annalisa
Mussi, Valentina
Statistical Classification for Raman Spectra of Tumoral Genomic DNA
title Statistical Classification for Raman Spectra of Tumoral Genomic DNA
title_full Statistical Classification for Raman Spectra of Tumoral Genomic DNA
title_fullStr Statistical Classification for Raman Spectra of Tumoral Genomic DNA
title_full_unstemmed Statistical Classification for Raman Spectra of Tumoral Genomic DNA
title_short Statistical Classification for Raman Spectra of Tumoral Genomic DNA
title_sort statistical classification for raman spectra of tumoral genomic dna
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503739/
https://www.ncbi.nlm.nih.gov/pubmed/36144012
http://dx.doi.org/10.3390/mi13091388
work_keys_str_mv AT durastanticlaudio statisticalclassificationforramanspectraoftumoralgenomicdna
AT cirilloemilionm statisticalclassificationforramanspectraoftumoralgenomicdna
AT debenedictisilaria statisticalclassificationforramanspectraoftumoralgenomicdna
AT leddamario statisticalclassificationforramanspectraoftumoralgenomicdna
AT sciortinoantonio statisticalclassificationforramanspectraoftumoralgenomicdna
AT lisiantonella statisticalclassificationforramanspectraoftumoralgenomicdna
AT convertinoannalisa statisticalclassificationforramanspectraoftumoralgenomicdna
AT mussivalentina statisticalclassificationforramanspectraoftumoralgenomicdna