Cargando…
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
The accurate intelligent identification and detection of road cracks is a key issue in road maintenance, and it has become popular to perform this task through the field of computer vision. In this paper, we proposed a deep learning-based crack detection method that initially uses the idea of image...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503856/ https://www.ncbi.nlm.nih.gov/pubmed/36146444 http://dx.doi.org/10.3390/s22187089 |
_version_ | 1784796069577621504 |
---|---|
author | Zhao, Mian Shi, Peixin Xu, Xunqian Xu, Xiangyang Liu, Wei Yang, Hao |
author_facet | Zhao, Mian Shi, Peixin Xu, Xunqian Xu, Xiangyang Liu, Wei Yang, Hao |
author_sort | Zhao, Mian |
collection | PubMed |
description | The accurate intelligent identification and detection of road cracks is a key issue in road maintenance, and it has become popular to perform this task through the field of computer vision. In this paper, we proposed a deep learning-based crack detection method that initially uses the idea of image sparse representation and compressed sensing to preprocess the datasets. Only the pixels that represent the crack features remain, while most pixels of non-crack features are relatively sparse, which can significantly improve the accuracy and efficiency of crack identification. The proposed method achieved good results based on the limited datasets of crack images. Various algorithms were tested, namely, linear smooth, median filtering, Gaussian smooth, and grayscale threshold, where the optimal parameters of the various algorithms were analyzed and trained with faster regions with convolutional neural network features (faster R-CNN). The results of the experiments showed that the proposed method has good robustness, with higher detection efficiency in the presence of, for example, road markings, shallow cracks, multiple cracks, and blurring. The result shows that the improvement of mean average precision (mAP) can reach 5% compared with the original method. |
format | Online Article Text |
id | pubmed-9503856 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95038562022-09-24 Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms Zhao, Mian Shi, Peixin Xu, Xunqian Xu, Xiangyang Liu, Wei Yang, Hao Sensors (Basel) Article The accurate intelligent identification and detection of road cracks is a key issue in road maintenance, and it has become popular to perform this task through the field of computer vision. In this paper, we proposed a deep learning-based crack detection method that initially uses the idea of image sparse representation and compressed sensing to preprocess the datasets. Only the pixels that represent the crack features remain, while most pixels of non-crack features are relatively sparse, which can significantly improve the accuracy and efficiency of crack identification. The proposed method achieved good results based on the limited datasets of crack images. Various algorithms were tested, namely, linear smooth, median filtering, Gaussian smooth, and grayscale threshold, where the optimal parameters of the various algorithms were analyzed and trained with faster regions with convolutional neural network features (faster R-CNN). The results of the experiments showed that the proposed method has good robustness, with higher detection efficiency in the presence of, for example, road markings, shallow cracks, multiple cracks, and blurring. The result shows that the improvement of mean average precision (mAP) can reach 5% compared with the original method. MDPI 2022-09-19 /pmc/articles/PMC9503856/ /pubmed/36146444 http://dx.doi.org/10.3390/s22187089 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Mian Shi, Peixin Xu, Xunqian Xu, Xiangyang Liu, Wei Yang, Hao Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms |
title | Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms |
title_full | Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms |
title_fullStr | Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms |
title_full_unstemmed | Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms |
title_short | Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms |
title_sort | improving the accuracy of an r-cnn-based crack identification system using different preprocessing algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503856/ https://www.ncbi.nlm.nih.gov/pubmed/36146444 http://dx.doi.org/10.3390/s22187089 |
work_keys_str_mv | AT zhaomian improvingtheaccuracyofanrcnnbasedcrackidentificationsystemusingdifferentpreprocessingalgorithms AT shipeixin improvingtheaccuracyofanrcnnbasedcrackidentificationsystemusingdifferentpreprocessingalgorithms AT xuxunqian improvingtheaccuracyofanrcnnbasedcrackidentificationsystemusingdifferentpreprocessingalgorithms AT xuxiangyang improvingtheaccuracyofanrcnnbasedcrackidentificationsystemusingdifferentpreprocessingalgorithms AT liuwei improvingtheaccuracyofanrcnnbasedcrackidentificationsystemusingdifferentpreprocessingalgorithms AT yanghao improvingtheaccuracyofanrcnnbasedcrackidentificationsystemusingdifferentpreprocessingalgorithms |