Cargando…
Improving the Accuracy of an R-CNN-Based Crack Identification System Using Different Preprocessing Algorithms
The accurate intelligent identification and detection of road cracks is a key issue in road maintenance, and it has become popular to perform this task through the field of computer vision. In this paper, we proposed a deep learning-based crack detection method that initially uses the idea of image...
Autores principales: | Zhao, Mian, Shi, Peixin, Xu, Xunqian, Xu, Xiangyang, Liu, Wei, Yang, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503856/ https://www.ncbi.nlm.nih.gov/pubmed/36146444 http://dx.doi.org/10.3390/s22187089 |
Ejemplares similares
-
Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
por: Xu, Xiangyang, et al.
Publicado: (2022) -
Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms
por: Heidari, Morteza, et al.
Publicado: (2020) -
Improving Arabic Sentiment Analysis Using CNN-Based Architectures and Text Preprocessing
por: Mhamed, Mustafa, et al.
Publicado: (2021) -
Accurate Identification of Tomograms of Lung Nodules Using CNN: Influence of the Optimizer, Preprocessing and Segmentation
por: Loeza Mejía, Cecilia Irene, et al.
Publicado: (2020) -
Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks
por: Fu, Ronghua, et al.
Publicado: (2020)