Cargando…

Device for Negative Pressure Wound Therapy in Low-Resource Regions: Open-Source Description and Bench Test Evaluation

Background: Negative (vacuum) pressure therapy promotes wound healing. However, commercially available devices are unaffordable to most potential users in low- and middle-income countries (LMICs), limiting access to many patients who could benefit from this treatment. This study aimed to design and...

Descripción completa

Detalles Bibliográficos
Autores principales: Farré, Ramon, Rodríguez-Lázaro, Miguel A., Gonzalez-Martin, Julian, Castro, Pedro, Hospital, Teresa, Compta, Yaroslau, Solana, Gorka, Gozal, David, Otero, Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503864/
https://www.ncbi.nlm.nih.gov/pubmed/36143070
http://dx.doi.org/10.3390/jcm11185417
Descripción
Sumario:Background: Negative (vacuum) pressure therapy promotes wound healing. However, commercially available devices are unaffordable to most potential users in low- and middle-income countries (LMICs), limiting access to many patients who could benefit from this treatment. This study aimed to design and test a cheap and easy-to-build negative pressure device and provide its detailed open-source description, thereby enabling free replication. Methods: the negative pressure device was built using off-the-shelf materials available via e-commerce and was based on a small pump, a pressure transducer, and the simplest Arduino controller with a digital display (total retail cost ≤ 75 US$). The device allows the user to set any therapeutic range of intermittent negative pressure and has two independent safety mechanisms. The performance of the low-cost device was carefully tested on the bench using a phantom wound, producing a realistic exudate flow rate. Results: the device generates the pressure patterns set by the user (25–175 mmHg of vacuum pressure, 0–60 min periods) and can drain exudate flows within the clinical range (up to 1 L/h). Conclusions: a novel, low-cost, easy-to-build negative pressure device for wound healing displays excellent technical performance. The open-source hardware description provided here, which allows for free replication and use in LMICs, will facilitate the application and wider utilization of this therapy to patients.