Cargando…

The Oral Microbiome Impacts the Link between Sugar Consumption and Caries: A Preliminary Study

Background: The excessive and frequent intake of refined sugar leads to caries. However, the relationship between the amount of sugar intake and the risk of caries is not always consistent. Oral microbial profile and function may impact the link between them. This study aims to identify the plaque m...

Descripción completa

Detalles Bibliográficos
Autores principales: Pang, Liangyue, Zhi, Qinghui, Jian, Wenting, Liu, Zhuoying, Lin, Huancai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503897/
https://www.ncbi.nlm.nih.gov/pubmed/36145068
http://dx.doi.org/10.3390/nu14183693
Descripción
Sumario:Background: The excessive and frequent intake of refined sugar leads to caries. However, the relationship between the amount of sugar intake and the risk of caries is not always consistent. Oral microbial profile and function may impact the link between them. This study aims to identify the plaque microbiota characteristics of caries subjects with low (CL) and high (CH) sugar consumption, and of caries-free subjects with low (FL) and high sugar (FH) consumption. Methods: A total of 40 adolescents were enrolled in the study, and supragingival plaque samples were collected and subjected to metagenomic analyses. The caries status, sugar consumption, and oral-health behaviors of the subjects were recorded. Results: The results indicate that the CL group showed a higher abundance of several cariogenic microorganisms Lactobacillus, A. gerencseriae, A. dentails, S. mutans, C. albicans, S. wiggsiae and P. acidifaciens. C. gingivalis, and P. gingivalis, which were enriched in the FH group. In terms of gene function, the phosphotransferase sugar uptake system, phosphotransferase system, and several two-component responses–regulator pairs were enriched in the CL group. Conclusion: Overall, our data suggest the existence of an increased cariogenic microbial community and sugar catabolism potential in the CL group, and a healthy microbial community in the FH group, which had self-stabilizing functional potential.