Cargando…
Single-Shot Object Detection via Feature Enhancement and Channel Attention
Features play a critical role in computer vision tasks. Deep learning methods have resulted in significant breakthroughs in the field of object detection, but it is still an extremely challenging obstacle when an object is very small. In this work, we propose a feature-enhancement- and channel-atten...
Autores principales: | Li, Yi, Wang, Lingna, Wang, Zeji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503941/ https://www.ncbi.nlm.nih.gov/pubmed/36146207 http://dx.doi.org/10.3390/s22186857 |
Ejemplares similares
-
Lightweight Feature Enhancement Network for Single-Shot Object Detection
por: Jia, Peng, et al.
Publicado: (2021) -
MSFFAL: Few-Shot Object Detection via Multi-Scale Feature Fusion and Attentive Learning
por: Zhang, Tianzhao, et al.
Publicado: (2023) -
An efficient single shot detector with weight-based feature fusion for small object detection
por: Li, Ming, et al.
Publicado: (2023) -
Accurate few-shot object counting with Hough matching feature enhancement
por: He, Zhiquan, et al.
Publicado: (2023) -
Single-shot self-supervised object detection in microscopy
por: Midtvedt, Benjamin, et al.
Publicado: (2022)