Cargando…
Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention
The air-quality index (AQI) is an important comprehensive evaluation index to measure the quality of air, with its value reflecting the degree of air pollution. However, it is difficult to predict the AQI accurately by the commonly used WRF-CMAQ model due to the uncertainty of the simulated meteorol...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503978/ https://www.ncbi.nlm.nih.gov/pubmed/36146298 http://dx.doi.org/10.3390/s22186953 |
_version_ | 1784796100103766016 |
---|---|
author | Guo, Yiren Zhu, Tingting Li, Zhenye Ni, Chao |
author_facet | Guo, Yiren Zhu, Tingting Li, Zhenye Ni, Chao |
author_sort | Guo, Yiren |
collection | PubMed |
description | The air-quality index (AQI) is an important comprehensive evaluation index to measure the quality of air, with its value reflecting the degree of air pollution. However, it is difficult to predict the AQI accurately by the commonly used WRF-CMAQ model due to the uncertainty of the simulated meteorological field and emission inventory. In this paper, a novel Auto-Modal network with Attention Mechanism (AMAM) has been proposed to predict the hourly AQI with a structure of dual input path. The first path is based on bidirectional encoder representation from the transformer to predict the AQI with the historical measured meteorological data and pollutants. The other path is a baseline to improve the generalization ability based on predicting the AQI by the WRF-CMAQ model. Several experiments were undertaken to evaluate the performance of the proposed model, with the results showing that the auto-modal network achieves a superior performance for all prediction lengths compared to some state-of-the-art models. |
format | Online Article Text |
id | pubmed-9503978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95039782022-09-24 Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention Guo, Yiren Zhu, Tingting Li, Zhenye Ni, Chao Sensors (Basel) Article The air-quality index (AQI) is an important comprehensive evaluation index to measure the quality of air, with its value reflecting the degree of air pollution. However, it is difficult to predict the AQI accurately by the commonly used WRF-CMAQ model due to the uncertainty of the simulated meteorological field and emission inventory. In this paper, a novel Auto-Modal network with Attention Mechanism (AMAM) has been proposed to predict the hourly AQI with a structure of dual input path. The first path is based on bidirectional encoder representation from the transformer to predict the AQI with the historical measured meteorological data and pollutants. The other path is a baseline to improve the generalization ability based on predicting the AQI by the WRF-CMAQ model. Several experiments were undertaken to evaluate the performance of the proposed model, with the results showing that the auto-modal network achieves a superior performance for all prediction lengths compared to some state-of-the-art models. MDPI 2022-09-14 /pmc/articles/PMC9503978/ /pubmed/36146298 http://dx.doi.org/10.3390/s22186953 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Yiren Zhu, Tingting Li, Zhenye Ni, Chao Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention |
title | Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention |
title_full | Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention |
title_fullStr | Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention |
title_full_unstemmed | Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention |
title_short | Auto-Modal: Air-Quality Index Forecasting with Modal Decomposition Attention |
title_sort | auto-modal: air-quality index forecasting with modal decomposition attention |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503978/ https://www.ncbi.nlm.nih.gov/pubmed/36146298 http://dx.doi.org/10.3390/s22186953 |
work_keys_str_mv | AT guoyiren automodalairqualityindexforecastingwithmodaldecompositionattention AT zhutingting automodalairqualityindexforecastingwithmodaldecompositionattention AT lizhenye automodalairqualityindexforecastingwithmodaldecompositionattention AT nichao automodalairqualityindexforecastingwithmodaldecompositionattention |