Cargando…

Denoising Single Images by Feature Ensemble Revisited

Image denoising is still a challenging issue in many computer vision subdomains. Recent studies have shown that significant improvements are possible in a supervised setting. However, a few challenges, such as spatial fidelity and cartoon-like smoothing, remain unresolved or decisively overlooked. O...

Descripción completa

Detalles Bibliográficos
Autores principales: Fahim, Masud An Nur Islam, Saqib, Nazmus, Siam, Shafkat Khan, Jung, Ho Yub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504084/
https://www.ncbi.nlm.nih.gov/pubmed/36146428
http://dx.doi.org/10.3390/s22187080
Descripción
Sumario:Image denoising is still a challenging issue in many computer vision subdomains. Recent studies have shown that significant improvements are possible in a supervised setting. However, a few challenges, such as spatial fidelity and cartoon-like smoothing, remain unresolved or decisively overlooked. Our study proposes a simple yet efficient architecture for the denoising problem that addresses the aforementioned issues. The proposed architecture revisits the concept of modular concatenation instead of long and deeper cascaded connections, to recover a cleaner approximation of the given image. We find that different modules can capture versatile representations, and a concatenated representation creates a richer subspace for low-level image restoration. The proposed architecture’s number of parameters remains smaller than in most of the previous networks and still achieves significant improvements over the current state-of-the-art networks.