Cargando…

State of Charge Estimation of Lithium-Ion Batteries Using Stacked Encoder–Decoder Bi-Directional LSTM for EV and HEV Applications

Energy storage technologies are being used excessively in industrial applications and in automobiles. Battery state of charge (SOC) is an important metric to be monitored in these applications to ensure proper and safe functionality. Since SOC cannot be measured directly, this paper puts forth a nov...

Descripción completa

Detalles Bibliográficos
Autores principales: Terala, Pranaya K., Ogundana, Ayodeji S., Foo, Simon Y., Amarasinghe, Migara Y., Zang, Huanyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504128/
https://www.ncbi.nlm.nih.gov/pubmed/36144020
http://dx.doi.org/10.3390/mi13091397
Descripción
Sumario:Energy storage technologies are being used excessively in industrial applications and in automobiles. Battery state of charge (SOC) is an important metric to be monitored in these applications to ensure proper and safe functionality. Since SOC cannot be measured directly, this paper puts forth a novel machine learning architecture to improve on the existing methods of SOC estimation. This method consists of using combined stacked bi-directional LSTM and encoder–decoder bi-directional long short-term memory architecture. This architecture henceforth represented as SED is implemented to overcome the nonparallel functionality observed in traditional RNN algorithms. Estimations were made utilizing different open-source datasets such as urban dynamometer driving schedule (UDDS), highway fuel efficiency test (HWFET), LA92 and US06. The least Mean Absolute Error observed was 0.62% at 25 °C for the HWFET condition, which confirms the good functionality of the proposed architecture.