Cargando…
A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke
Background: The ability to accurately detect ischemic stroke and predict its neurological recovery is of great clinical value. This study intended to evaluate the performance of whole-brain dynamic radiomics features (DRF) for ischemic stroke detection, neurological impairment assessment, and outcom...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504165/ https://www.ncbi.nlm.nih.gov/pubmed/36143010 http://dx.doi.org/10.3390/jcm11185364 |
_version_ | 1784796147193217024 |
---|---|
author | Guo, Yingwei Yang, Yingjian Cao, Fengqiu Wang, Mingming Luo, Yu Guo, Jia Liu, Yang Zeng, Xueqiang Miu, Xiaoqiang Zaman, Asim Lu, Jiaxi Kang, Yan |
author_facet | Guo, Yingwei Yang, Yingjian Cao, Fengqiu Wang, Mingming Luo, Yu Guo, Jia Liu, Yang Zeng, Xueqiang Miu, Xiaoqiang Zaman, Asim Lu, Jiaxi Kang, Yan |
author_sort | Guo, Yingwei |
collection | PubMed |
description | Background: The ability to accurately detect ischemic stroke and predict its neurological recovery is of great clinical value. This study intended to evaluate the performance of whole-brain dynamic radiomics features (DRF) for ischemic stroke detection, neurological impairment assessment, and outcome prediction. Methods: The supervised feature selection (Lasso) and unsupervised feature-selection methods (five-feature dimension-reduction algorithms) were used to generate four experimental groups with DRF in different combinations. Ten machine learning models were used to evaluate their performance by ten-fold cross-validation. Results: In experimental group_A, the best AUCs (0.873 for stroke detection, 0.795 for NIHSS assessment, and 0.818 for outcome prediction) were obtained by outstanding DRF selected by Lasso, and the performance of significant DRF was better than the five-feature dimension-reduction algorithms. The selected outstanding dimension-reduction DRF in experimental group_C obtained a better AUC than dimension-reduction DRF in experimental group_A but were inferior to the outstanding DRF in experimental group_A. When combining the outstanding DRF with each dimension-reduction DRF (experimental group_B), the performance can be improved in ischemic stroke detection (best AUC = 0.899) and NIHSS assessment (best AUC = 0.835) but failed in outcome prediction (best AUC = 0.806). The performance can be further improved when combining outstanding DRF with outstanding dimension-reduction DRF (experimental group_D), achieving the highest AUC scores in all three evaluation items (0.925 for stroke detection, 0.853 for NIHSS assessment, and 0.828 for outcome prediction). By the method in this study, comparing the best AUC of F(t)(-test) in experimental group_A and the best_AUC in experimental group_D, the AUC in stroke detection increased by 19.4% (from 0.731 to 0.925), the AUC in NIHSS assessment increased by 20.1% (from 0.652 to 0.853), and the AUC in prognosis prediction increased by 14.9% (from 0.679 to 0.828). This study provided a potential clinical tool for detailed clinical diagnosis and outcome prediction before treatment. |
format | Online Article Text |
id | pubmed-9504165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95041652022-09-24 A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke Guo, Yingwei Yang, Yingjian Cao, Fengqiu Wang, Mingming Luo, Yu Guo, Jia Liu, Yang Zeng, Xueqiang Miu, Xiaoqiang Zaman, Asim Lu, Jiaxi Kang, Yan J Clin Med Article Background: The ability to accurately detect ischemic stroke and predict its neurological recovery is of great clinical value. This study intended to evaluate the performance of whole-brain dynamic radiomics features (DRF) for ischemic stroke detection, neurological impairment assessment, and outcome prediction. Methods: The supervised feature selection (Lasso) and unsupervised feature-selection methods (five-feature dimension-reduction algorithms) were used to generate four experimental groups with DRF in different combinations. Ten machine learning models were used to evaluate their performance by ten-fold cross-validation. Results: In experimental group_A, the best AUCs (0.873 for stroke detection, 0.795 for NIHSS assessment, and 0.818 for outcome prediction) were obtained by outstanding DRF selected by Lasso, and the performance of significant DRF was better than the five-feature dimension-reduction algorithms. The selected outstanding dimension-reduction DRF in experimental group_C obtained a better AUC than dimension-reduction DRF in experimental group_A but were inferior to the outstanding DRF in experimental group_A. When combining the outstanding DRF with each dimension-reduction DRF (experimental group_B), the performance can be improved in ischemic stroke detection (best AUC = 0.899) and NIHSS assessment (best AUC = 0.835) but failed in outcome prediction (best AUC = 0.806). The performance can be further improved when combining outstanding DRF with outstanding dimension-reduction DRF (experimental group_D), achieving the highest AUC scores in all three evaluation items (0.925 for stroke detection, 0.853 for NIHSS assessment, and 0.828 for outcome prediction). By the method in this study, comparing the best AUC of F(t)(-test) in experimental group_A and the best_AUC in experimental group_D, the AUC in stroke detection increased by 19.4% (from 0.731 to 0.925), the AUC in NIHSS assessment increased by 20.1% (from 0.652 to 0.853), and the AUC in prognosis prediction increased by 14.9% (from 0.679 to 0.828). This study provided a potential clinical tool for detailed clinical diagnosis and outcome prediction before treatment. MDPI 2022-09-13 /pmc/articles/PMC9504165/ /pubmed/36143010 http://dx.doi.org/10.3390/jcm11185364 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Yingwei Yang, Yingjian Cao, Fengqiu Wang, Mingming Luo, Yu Guo, Jia Liu, Yang Zeng, Xueqiang Miu, Xiaoqiang Zaman, Asim Lu, Jiaxi Kang, Yan A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke |
title | A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke |
title_full | A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke |
title_fullStr | A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke |
title_full_unstemmed | A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke |
title_short | A Focus on the Role of DSC-PWI Dynamic Radiomics Features in Diagnosis and Outcome Prediction of Ischemic Stroke |
title_sort | focus on the role of dsc-pwi dynamic radiomics features in diagnosis and outcome prediction of ischemic stroke |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504165/ https://www.ncbi.nlm.nih.gov/pubmed/36143010 http://dx.doi.org/10.3390/jcm11185364 |
work_keys_str_mv | AT guoyingwei afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT yangyingjian afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT caofengqiu afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT wangmingming afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT luoyu afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT guojia afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT liuyang afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT zengxueqiang afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT miuxiaoqiang afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT zamanasim afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT lujiaxi afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT kangyan afocusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT guoyingwei focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT yangyingjian focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT caofengqiu focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT wangmingming focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT luoyu focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT guojia focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT liuyang focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT zengxueqiang focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT miuxiaoqiang focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT zamanasim focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT lujiaxi focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke AT kangyan focusontheroleofdscpwidynamicradiomicsfeaturesindiagnosisandoutcomepredictionofischemicstroke |