Cargando…
HT-Net: A Hybrid Transformer Network for Fundus Vessel Segmentation
Doctors usually diagnose a disease by evaluating the pattern of abnormal blood vessels in the fundus. At present, the segmentation of fundus blood vessels based on deep learning has achieved great success, but it still faces the problems of low accuracy and capillary rupture. A good vessel segmentat...
Autores principales: | Hu, Xiaolong, Wang, Liejun, Li, Yongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504252/ https://www.ncbi.nlm.nih.gov/pubmed/36146132 http://dx.doi.org/10.3390/s22186782 |
Ejemplares similares
-
HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation
por: Hu, Xiaolong, et al.
Publicado: (2021) -
TC-Net: Dual coding network of Transformer and CNN for skin lesion segmentation
por: Dong, Yuying, et al.
Publicado: (2022) -
HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
por: An, Lijing, et al.
Publicado: (2022) -
HMT-Net: Transformer and MLP Hybrid Encoder for Skin Disease Segmentation
por: Yang, Sen, et al.
Publicado: (2023) -
FAC-Net: Feedback Attention Network Based on Context Encoder Network for Skin Lesion Segmentation
por: Dong, Yuying, et al.
Publicado: (2021)