Cargando…
Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates
The incorporation of plastic aggregates as a partial replacement of natural aggregates in cementitious materials is interesting in several ways. From a mechanical point of view, the partial substitution of sand with plastic aggregates could improve some properties (e.g., ductility, thermal insulatio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504258/ https://www.ncbi.nlm.nih.gov/pubmed/36146058 http://dx.doi.org/10.3390/polym14183914 |
_version_ | 1784796170871111680 |
---|---|
author | El Bitouri, Youssef Perrin, Didier |
author_facet | El Bitouri, Youssef Perrin, Didier |
author_sort | El Bitouri, Youssef |
collection | PubMed |
description | The incorporation of plastic aggregates as a partial replacement of natural aggregates in cementitious materials is interesting in several ways. From a mechanical point of view, the partial substitution of sand with plastic aggregates could improve some properties (e.g., ductility, thermal insulation). This paper deals with the mechanical strength of mortars containing plastic aggregates as a partial replacement of sand. Part of the volume of sand in cement mortars is substituted with plastic aggregates which originate from WEEE (Waste from Electrical and Electronic Equipment) and consist of a mix of ABS (acrylonitrile-butadiene styrene), HIPS (high impact polystyrene) and PP (Polypropylene), or of monomaterial ABS from WEEE sorting. Three rates of replacement (by volume of sand) were tested: 10%, 15% and 30%. Mechanical tests were performed according to European standard EN196-1. The results show that compressive and flexural strength decrease with rate of replacement, but remain satisfactory for structural purposes. In addition, the density of mortar is reduced with the incorporation of plastic aggregates. The decrease of mechanical strength is mainly due to the weak bond between cement paste and plastic aggregates leading to the increase of porosity. Furthermore, it appears that mortars containing plastic aggregates could present a ductile rupture. |
format | Online Article Text |
id | pubmed-9504258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95042582022-09-24 Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates El Bitouri, Youssef Perrin, Didier Polymers (Basel) Article The incorporation of plastic aggregates as a partial replacement of natural aggregates in cementitious materials is interesting in several ways. From a mechanical point of view, the partial substitution of sand with plastic aggregates could improve some properties (e.g., ductility, thermal insulation). This paper deals with the mechanical strength of mortars containing plastic aggregates as a partial replacement of sand. Part of the volume of sand in cement mortars is substituted with plastic aggregates which originate from WEEE (Waste from Electrical and Electronic Equipment) and consist of a mix of ABS (acrylonitrile-butadiene styrene), HIPS (high impact polystyrene) and PP (Polypropylene), or of monomaterial ABS from WEEE sorting. Three rates of replacement (by volume of sand) were tested: 10%, 15% and 30%. Mechanical tests were performed according to European standard EN196-1. The results show that compressive and flexural strength decrease with rate of replacement, but remain satisfactory for structural purposes. In addition, the density of mortar is reduced with the incorporation of plastic aggregates. The decrease of mechanical strength is mainly due to the weak bond between cement paste and plastic aggregates leading to the increase of porosity. Furthermore, it appears that mortars containing plastic aggregates could present a ductile rupture. MDPI 2022-09-19 /pmc/articles/PMC9504258/ /pubmed/36146058 http://dx.doi.org/10.3390/polym14183914 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article El Bitouri, Youssef Perrin, Didier Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates |
title | Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates |
title_full | Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates |
title_fullStr | Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates |
title_full_unstemmed | Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates |
title_short | Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates |
title_sort | compressive and flexural strengths of mortars containing abs and weee based plastic aggregates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504258/ https://www.ncbi.nlm.nih.gov/pubmed/36146058 http://dx.doi.org/10.3390/polym14183914 |
work_keys_str_mv | AT elbitouriyoussef compressiveandflexuralstrengthsofmortarscontainingabsandweeebasedplasticaggregates AT perrindidier compressiveandflexuralstrengthsofmortarscontainingabsandweeebasedplasticaggregates |