Cargando…
Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018–2020)
The increased frequency of extreme weather events due to climate change has complicated the epidemiological pattern of mosquito-borne diseases, as the host and vector dynamics shift to adapt. However, little is known about the seroprevalence of common mosquito-borne virus infections in horses in Aus...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504300/ https://www.ncbi.nlm.nih.gov/pubmed/36146651 http://dx.doi.org/10.3390/v14091846 |
Sumario: | The increased frequency of extreme weather events due to climate change has complicated the epidemiological pattern of mosquito-borne diseases, as the host and vector dynamics shift to adapt. However, little is known about the seroprevalence of common mosquito-borne virus infections in horses in Australia. In this study, serological surveys for multiple alphaviruses were performed on samples taken from 622 horses across two horse populations (racehorses and horses residing on The University of Queensland (UQ) campus) in Queensland using the gold standard virus neutralization test. As is the case in humans across Australia, Ross River virus (RRV) is the most common arbovirus infection in horses, followed by Barmah Forest virus, with an overall apparent seroprevalence of 48.6% (302/622) and 4.3% (26/607), respectively. Horses aged over 6 years old (OR 1.86, p = 0.01) and residing at UQ (OR 5.8, p < 0.001) were significantly associated with seroconversion to RRV. A significant medium correlation (r = 0.626, p < 0.001) between RRV and Getah virus (GETV) neutralizing antibody titers was identified. Collectively, these results advance the current epidemiological knowledge of arbovirus exposure in a susceptible host in Australia. The potential use of horses as sentinels for arbovirus monitoring should be considered. Furthermore, since GETV is currently exotic to Australia, antibodies cross-reactivity between RRV and GETV should be further investigated for cross-protection, which may also help to inform vaccine developments. |
---|