Cargando…
Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells
The use of primary cells in human liver therapy is limited by a lack of cells. Induced pluripotent stem cells (iPSCs) represent an alternative to primary cells as they are infinitely expandable and can be differentiated into different liver cell types. The aim of our work was to demonstrate that sim...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504404/ https://www.ncbi.nlm.nih.gov/pubmed/36142774 http://dx.doi.org/10.3390/ijms231810861 |
_version_ | 1784796207480045568 |
---|---|
author | Luce, Eleanor Steichen, Clara Abed, Soumeya Weber, Anne Leboulch, Philippe Maouche-Chrétien, Leila Dubart-Kupperschmitt, Anne |
author_facet | Luce, Eleanor Steichen, Clara Abed, Soumeya Weber, Anne Leboulch, Philippe Maouche-Chrétien, Leila Dubart-Kupperschmitt, Anne |
author_sort | Luce, Eleanor |
collection | PubMed |
description | The use of primary cells in human liver therapy is limited by a lack of cells. Induced pluripotent stem cells (iPSCs) represent an alternative to primary cells as they are infinitely expandable and can be differentiated into different liver cell types. The aim of our work was to demonstrate that simian iPSCs (siPSCs) could be used as a new source of liver cells to be used as a large animal model for preclinical studies. We first differentiated siPSCs into a homogenous population of hepatoblasts (siHBs). We then separately differentiated them into hepatocytes (siHeps) and cholangiocytes (siChols) expressing respective specific markers and displaying epithelial polarity. Moreover, we showed that polarized siChols can self-organize into 3D structures. These results should facilitate the deciphering of liver development and open the way to exploring co-culture systems that could be assessed during preclinical studies, including in autologous monkey donors, for regenerative medicine purposes. |
format | Online Article Text |
id | pubmed-9504404 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95044042022-09-24 Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells Luce, Eleanor Steichen, Clara Abed, Soumeya Weber, Anne Leboulch, Philippe Maouche-Chrétien, Leila Dubart-Kupperschmitt, Anne Int J Mol Sci Article The use of primary cells in human liver therapy is limited by a lack of cells. Induced pluripotent stem cells (iPSCs) represent an alternative to primary cells as they are infinitely expandable and can be differentiated into different liver cell types. The aim of our work was to demonstrate that simian iPSCs (siPSCs) could be used as a new source of liver cells to be used as a large animal model for preclinical studies. We first differentiated siPSCs into a homogenous population of hepatoblasts (siHBs). We then separately differentiated them into hepatocytes (siHeps) and cholangiocytes (siChols) expressing respective specific markers and displaying epithelial polarity. Moreover, we showed that polarized siChols can self-organize into 3D structures. These results should facilitate the deciphering of liver development and open the way to exploring co-culture systems that could be assessed during preclinical studies, including in autologous monkey donors, for regenerative medicine purposes. MDPI 2022-09-17 /pmc/articles/PMC9504404/ /pubmed/36142774 http://dx.doi.org/10.3390/ijms231810861 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luce, Eleanor Steichen, Clara Abed, Soumeya Weber, Anne Leboulch, Philippe Maouche-Chrétien, Leila Dubart-Kupperschmitt, Anne Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells |
title | Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells |
title_full | Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells |
title_fullStr | Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells |
title_full_unstemmed | Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells |
title_short | Successful Derivation of Hepatoblasts, Cholangiocytes and Hepatocytes from Simian Induced Pluripotent Stem Cells |
title_sort | successful derivation of hepatoblasts, cholangiocytes and hepatocytes from simian induced pluripotent stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504404/ https://www.ncbi.nlm.nih.gov/pubmed/36142774 http://dx.doi.org/10.3390/ijms231810861 |
work_keys_str_mv | AT luceeleanor successfulderivationofhepatoblastscholangiocytesandhepatocytesfromsimianinducedpluripotentstemcells AT steichenclara successfulderivationofhepatoblastscholangiocytesandhepatocytesfromsimianinducedpluripotentstemcells AT abedsoumeya successfulderivationofhepatoblastscholangiocytesandhepatocytesfromsimianinducedpluripotentstemcells AT weberanne successfulderivationofhepatoblastscholangiocytesandhepatocytesfromsimianinducedpluripotentstemcells AT leboulchphilippe successfulderivationofhepatoblastscholangiocytesandhepatocytesfromsimianinducedpluripotentstemcells AT maouchechretienleila successfulderivationofhepatoblastscholangiocytesandhepatocytesfromsimianinducedpluripotentstemcells AT dubartkupperschmittanne successfulderivationofhepatoblastscholangiocytesandhepatocytesfromsimianinducedpluripotentstemcells |