Cargando…
Context dependent prediction in DNA sequence using neural networks
One way to better understand the structure in DNA is by learning to predict the sequence. Here, we trained a model to predict the missing base at any given position, given its left and right flanking contexts. Our best-performing model was a neural network that obtained an accuracy close to 54% on t...
Autores principales: | Grønbæk, Christian, Liang, Yuhu, Elliott, Desmond, Krogh, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504454/ https://www.ncbi.nlm.nih.gov/pubmed/36157058 http://dx.doi.org/10.7717/peerj.13666 |
Ejemplares similares
-
Context dependency of nucleotide probabilities and variants in human DNA
por: Liang, Yuhu, et al.
Publicado: (2022) -
Correction to: Context dependency of nucleotide probabilities and variants in human DNA
por: Liang, Yuhu, et al.
Publicado: (2022) -
Predicting the effect of variants on splicing using Convolutional Neural Networks
por: Thanapattheerakul, Thanyathorn, et al.
Publicado: (2020) -
Prediction of DNA binding proteins using local features and long-term dependencies with primary sequences based on deep learning
por: Li, Guobin, et al.
Publicado: (2021) -
GISA: using Gauss Integrals to identify rare conformations in protein structures
por: Grønbæk, Christian, et al.
Publicado: (2020)